علوم الأرض والبيئة 10

الجزء الأول

الصف العاشر

كتاب الطالب

قائمةُ المحتوياتِ

المقدمةُ
الوحدةُ الأولى: الصخورُ
الدرسُ 1: الصخورُ الناريةُ
الدرسُ 2: الصخورُ الرسوبيةُ
الدرسُ 3: الصخورُ المُتحوِّلةُ
الإثراءُ والتوسُّعُ: الصوفُ الصخريُّ
مراجعةُ الوحدةِ
الوحدةُ الثانيةُ: النجومُ
الدرسُ 1: ماهيةُ النجوم
الدرسُ 2: الأنظمةُ النجَميةُ والكوكباتُ
الدرسُ 3: دورةُ حياةِ النجوم
الإثراءُ والتوسُّعُ: مِقرابُ الكُوَّةِ الدائريةِ الصينيُّ (فاست)
مراجعةُ الوحدةِ
مسر دُ المصطلحاتِ
قائمةُ المراجع

المقدمة

عمل المركز الوطني لتطوير المناهج على إعداد كتب العلوم بالتعاون مع الشركاء من وزارة التربية والتعليم والجامعات والجهات ذات العلاقة، ومنها كتاب علوم الأرض والبيئة للصف العاشر.

جاء هذا الكتاب مُحقِّقًا لمضامين الإطار العام والإطار الخاص للعلوم، ومعاييرها، ومؤشرات أدائها المُتمثِّلة في إعداد جيل محيط بمهارات القرن الواحد والعشرين، وقادر على مواجهة التحديات، ومُعتز – في الوقت نفسه – بانتمائه الوطني. وتأسيسًا على ذلك، فقد اعتُمِدت دورة التعلُّم الخماسية المنبثقة من النظرية البنائية التي تمنح الطالب الدور الأكبر في العملية التعلُّمية التعليمية، وتُوفِّر له فرصًا عديدة للاستقصاء، وحل المشكلات، والبحث، واستخدام التكنولوجيا وعمليات العلم. اعتُمِد أيضًا في كتب العلوم، ومنها كتب علوم الأرض والبيئة، منحى STEAM في التعليم الذي يُستعمَل لدمج العلوم والتكنولوجيا والهندسة والفن والعلوم الإنسانية والرياضيات في أنشطة الكتاب المتنوعة، وفي قضايا البحث.

روعي في هذا الكتاب استعمال التقويم والإفادة منه بصورة فاعلة، بدءًا بالتقويم التمهيدي الذي يتمثّل في طرح سؤال ببداية كل وحدة ضمن بند (أتأمل الصورة)، وانتهاءً بالأسئلة التكوينية المتنوعة في نهاية كل موضوع من موضوعات الدرس، فضلًا عن الأسئلة التقويمية في نهاية كل درس، والتقويم الختامي في نهاية كل وحدة، وتضمينها أيضًا أسئلة تثير التفكير، وأُخرى تحاكي أسئلة الاختبارات الدولية (TIMSS) و (PISA).

يتألف هذا الكتاب من خمس وحدات دراسية مُوزَّعة على الفصلين الدراسيين، ويشتمل الفصل الأول منه على وحدات المياه العادمة، الأول منه على وحدتي الصخور والنجوم، في حين يشتمل الفصل الثاني على وحدات المياه العادمة، والمحيطات، والأرصاد الجوية. وتحتوي كل وحدة على تجربة استهلالية، وتجارب وأنشطة استقصائية متضمنة في الدروس، وقضايا للبحث، وأسئلة تفكير، وموضوع إثرائي في نهاية الوحدة.

وقد أُلحِقَ بكتاب علوم الأرض والبيئة كرّاسةٌ للأنشطة والتجارب العملية، تحتوي على جميع التجارب والأنشطة الواردة في كتاب الطالب، بحيث تساعده على تنفيذ تلك الأنشطة والتجارب بسهولة ويسر.

قالَ تعالى:

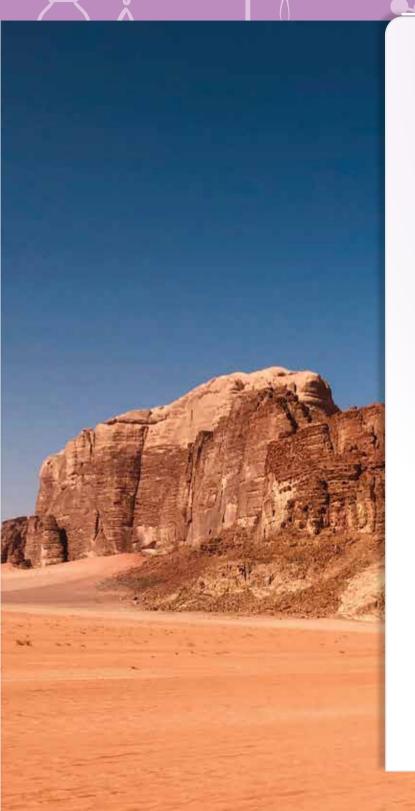
﴿ أَلَمْ تَرَ أَنَّ ٱللَّهَ أَنَ لَمِنَ ٱلسَّمَآءِ مَآءً فَأَخْرَجَنَا بِهِ عَثَمَرَتِ تُخْتَلِفًا الْمَرَاتِ تُخْتَلِفًا أَلُوا مُنَا الْمَالَةِ مَلَا اللَّهِ اللَّهِ اللَّهِ اللَّهِ اللَّهِ اللَّهِ اللَّهِ (فاطر، الآبة 22)

أتأمْلُ الصورة كيفَ تكوَّنتِ الجبالُ الصخريةُ العاليةُ في منطقةِ وادي رَمِّ جنوبَ الأردنَّ؟ ما علاقتُها ببقيةِ أنواع الصخورِ؟

الفكرةُ العامةُ:

تُصنَّفُ الصخورُ تبعًا لآليةِ تكوُّنِها إلى صخورٍ نُصنَّفُ الصخورِ مُتحوِّلةٍ. فاريةٍ، وصخورٍ مُتحوِّلةٍ.

الدرسُ الأولُ: الصخورُ الناريةُ


الفكرةُ الرئيسةُ: تتكوَّنُ الصخورُ الناريةُ نتيجةً لتبريدِ الماغما واللّابة وتبلوُرِهِما، وتُصنَّفُ بناءً على مكانِ تبلوُرِها إلى صخورٍ ناريةٍ جوفيةٍ، وصخورٍ ناريةٍ سطحيةٍ.

الدرسُ الثاني: الصخورُ الرسوبيةُ

الفكرةُ الرَّئيسةُ: تتكوَّنُ الصخورُ الرسوبيةُ نتيجةَ تصخُّر الرسوبياتِ على شكلِ طبقاتٍ متتاليةِ.

الدرسُ الثالثُ: الصخورُ المُتحوِّلةُ

الفكرةُ الرَّئيسةُ: تتكوَّنُ الصخورُ المُتحوِّلةُ منْ صخورٍ ناريةٍ، أَوْ رسوبيةٍ، أَوْ مُتحوِّلةٍ تعرَّضَتْ لِعواملَ عِدَّةٍ، منْها: الضغطُ، والحرارةُ، والمحاليلُ الحرمائيةُ.

تصنيف الصخور

تتنوَّعُ الصخورُ في الطبيعةِ، وتختلفُ في ما بينَها منْ حيثُ الخصائصُ، ولكنَّها تشتركُ معًا في خصائصَ رئيسةٍ استندَ إليْها العلماءُ في عمليةِ تصنيفِها.

الموادُّ والأدواتُ:عيِّناتٌ صخريةٌ مُتنوِّعةٌ، أدواتُ تحديدِ القساوةِ، عدسةٌ مُكبِّرةٌ، حمضُ الهيدروكلوريكِ (HCl) المُخفَّفُ، مِطْرقةٌ ، قَطّارةٌ.

إرشاداتُ السلامةِ:

- الحذرُ في أثناءِ استعمالِ حمضِ الهيدروكلوريكِ المُخفَّف، والمِطْرقةِ.
 - غسلُ اليدينِ جيدًا بالماءِ والصابونِ بعدَ الانتهاءِ منْ تنفيذِ التجربةِ.

خطوات العمل:

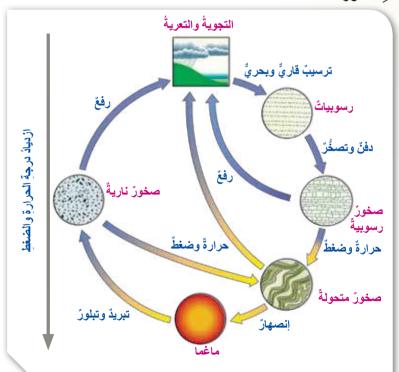
- 1 أُرقِّمُ العيِّناتِ الصخرية.
- 2 أتفحَّصُ خصائصَ العيناتِ الصخريةِ بالعينِ المُجرَّدةِ، وباستعمالِ العدسةِ المُكبِّرةِ، منْ مثلِ: الملمسِ، وحجمِ الحبيباتِ، ووجودِ بقايا كائناتٍ حيَّةٍ (أحافيرُ) فيها، واللونِ، والقساوةِ، واحتوائِها على طبقاتٍ رقيقةٍ، وتفاعلِها معَ حمضِ الهيدروكلوريكِ المُخفَّفِ، ثمَّ أُدوِّنُ ملاحظاتي.
 - 3 أُصنِّفُ العيِّناتِ الصخريةَ بناءً على ملاحظاتي، وأذكرُ المُسوِّغَ الذي اعتمدْتُ عليْهِ في عمليةِ التصنيفِ، ثمَّ أكتبُ النوعَ المُقترَحَ للصخرِ.

التحليلُ والاستنتاجُ:

- 1 أُ**قارِ**نُ بينَ الأنواعِ المُقترَحةِ للصخورِ. ما أوجهُ التشابُهِ والاختلافِ بينَها؟
- 2 أُقارِنُ تصنيفي للعيِّناتِ الصخريةِ بتصنيفاتِ زملائي. هلْ يوجدُ بينَها تشابُهُ أمِ اختلافٌ؟
 - 3 أُحدُّ الخصائصَ الرئيسةَ التي يُمكِنُ تصنيفُ الصخورِ على أساسِها.

الدرس [

الصخورُ الناريةُ


Igneous Rocks

دورةُ الصخورِ Rock Cycle

استفاد الإنسانُ من الصخور ومُكوِّناتِها المعدنيةِ على مَرِّ العصورِ؛ إذِ استخدمَها في بناءِ مسكنِه، وصنع أسلحتِه، واستخرجَ منْها العديدَ من العناصرِ، مثل: الحديدِ، والنحاسِ. وقدِ اهتمَّ العلماءُ قديمًا وحديثًا بدراسةِ الصخورِ والمعادنِ، وبحثوا في خصائصِها، وأماكنِ وجودِها، وكيفيةِ نشأتِها. وزادَ هذا الاهتمامُ في ظلِّ التقدُّم العلميِّ.

بوجه عامًّ، صنَّفَ العلماءُ صخورَ القشرةِ الأرضيةِ بحسبِ طريقةِ نشأتِها وتكوُّنِها إلى ثلاثةِ أنواعِ رئيسةٍ، هيَ: الصخورُ الناريةُ Sedimentary Rocks، والصخورُ الرسوبيةُ Sedimentary Rocks، والصخورُ الرسوبيةُ Metamorphic Rocks.

ترتبطُ هذهِ الأنواعُ الثلاثةُ بعلاقاتٍ متبادلةٍ عنْ طريقِ العملياتِ الجيولوجيةِ المختلفةِ؛ إذْ يتغيَّرُ كلُّ نوع منْها إلى الآخر في دورةٍ تُسمّى دورة الصخورِ Rock Cycle ، أنظرُ الشكلَ (1) الذي يُمثُّلُ هذه الدورةَ.

الشكلُ (1): دورةُ الصخورِ في الطبيعةِ. أُحدِّدُ ما المرحلةُ التي يجبُ أنْ تمرَّ بها الصخورُ جميعًا لتُشكِّلَ الصخورَ الناريةَ؟

الفكرةُ الرّئيسةُ:

تتكوَّنُ الصخورُ الناريةُ نتيجةً لتبريدِ الماغما واللابة وتبلوُرهُما، وتُصنَّفُ بناءً على مكانِ تبلوُرِها إلى صخورٍ ناريةٍ جوفيةٍ، وصخورٍ ناريةٍ سطحيةٍ.

نتاجاتُ التعلم:

- أُبيِّنُ وجود ثلاثة أنواع من الصخور
 تتكوَّنُ منها القشرةُ الأرضيةُ.
 - أتعرَّفُ أنواعَ الصخورِ الناريةِ.
- أُصنِّفُ الصَّخورَ الناريةَ وأشكالَها في الطبيعةِ.

المفاهية والمصطلحات:

دورةُ الصخورِ Rock Cycle الماغما Magma اللانةُ Lava الصخورُ الناريةُ الجو فيةُ Intrusive Igneous Rocks الصخورُ الناريةُ السطحيةُ Extrusive Igneous Rocks النسيجُ Texture نسيجٌ خشن الحبيباتِ Coarse Grained Texture نسيجٌ ناعمُ الحبيباتِ Fine Grained Texture النسيخُ الزجاجيُّ Glassy Texture النسيجُ السماقيُّ (البورفيريُّ) Porphyritic Texture النسيجُ الفقاعيُّ Vesicular Texture تنشأُ بعضُ أنواعٍ منَ الصخورِ الناريةِ في باطنِ الأرضِ منْ تبلوُرِ الماغما Magma وهي صُهيْرٌ يتكوَّنُ معظمُهُ منِ السليكا، ومنْ غازاتٍ أهمُّها بخارُ الماءِ. عندما تتعرَّضُ الصخورُ الناريةُ المُتكوِّنةُ في باطنِ الأرضِ لعملياتٍ جيولوجيةٍ تعملُ على رفعِها، فإنَّها تتكشَّفُ على سطحِ الأرضِ، وتَحْدُثُ عليْها عملياتُ التجويةِ والتعريةِ؛ أنظرُ الشكلَ (2) ما يؤدي إلى تفتُّتِ الصخورِ، وتكوُّنِ الفتاتِ الصخريِّ الذي قدْ يُنقلُ بفعلِ الرياحِ أو الماءِ إلى أماكنَ أُخرى تُسمّى أماكنَ الترسيب، وحينَ فيستقرُّ فيها، ويتراكمُ مُشكِّلًا الرسوبياتِ بعمليةٍ تُسمّى الترسيبَ. وحينَ تُدفَنُ الرسوبياتُ، وتتراكمُ، فإنَّها تتصلَّبُ مُكوِّنةً الصخورَ الرسوبية.

عندَ تعرُّضِ الصخورِ الرسوبيةِ المُتكوِّنةِ إلى ضغطٍ وحرارةٍ عالييْنِ دونَ درجةِ الانصهارِ، فإنَّها تصبحُ صخورًا مُتحوِّلةً. وقدْ تنصهرُ هذهِ الأنواعُ الثلاثةُ عندَ دفنِها في أعماقٍ كبيرةٍ بباطنِ الأرضِ نتيجةَ الحرارةِ العاليةِ، فتتشكَّلُ الماغما مَرَّةً أُخرى.

تكوُّنُ الصخورِ الناريةِ Igneous Rocks Formation

تنشأُ الصخورُ الناريةُ منْ تبريدِ الماغما وتبلوُرِها في باطنِ الأرضِ. وعندما وتتراوحُ درجاتُ حرارةِ الماغما بينَ (٥٠ - ٢٥٥ - ١ ع م 1300). وعندما تخرجُ الماغما منْ باطنِ الأرضِ إلى سطحِها، فإنّها تُسمّى اللابةَ Lava وهي تمتازُ عنِ الماغما بفقدانِها كميّةً كبيرةً منَ الغازاتِ التي كانَتْ ذائبةً فيها.

تختلفُ أنواعُ الصخورِ الناريةِ المُتكوِّنةِ باختلافِ نوعِ الماغما المُكوِّنةِ لها علمًا بأنَّ أكثرَ العناصرِ الرئيسةِ شيوعًا في الماغما هي العناصرُ الشائعةُ نفسُها في صخورِ القشرةِ الأرضيةِ: الأكسجينُ، العناصرُ الثالومنيومُ، الحديدُ، الكالسيومُ، الصوديومُ، البوتاسيومُ، المغنيسيومُ. ونظرًا إلى وفرةِ عنصرِ السليكا في الماغما؛ فإنَّ أكسيدَ السليكا على الناريةِ. فما أنواعُ السليكا على الناريةِ؟ كيفَ صنَّها العلماءُ؟

الشكلُ (2): صخورٌ تعرَّضَتْ لعملياتِ تحوية.

أَفْكِلَ تَتكوَّنُ الماغما والقشرةُ الأرضيةُ منْ عناصرَ رئيسةٍ كما في النصِّ المجاورِ.

أَفكُرُ:

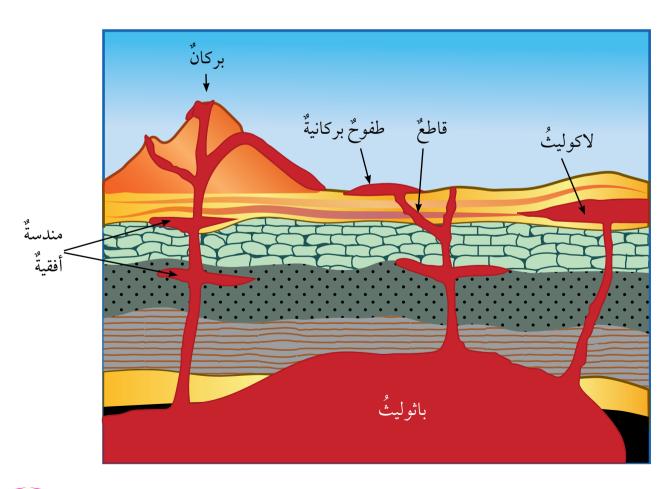
ما العلاقةُ بينَ نسبةِ عنصرَيِ الأكسجينِ والسليكونِ في الماغما ووفرةِ المعادنِ السليكاتيةِ في صخورِ القشرةِ الأرضيةِ؟ أُناقِشُ مُعلِّمي وزملائي في النتائجِ التي أتوصَّلُ إليْها.

الشكلُ (3): صخورٌ ناريةٌ سطحيةٌ تكوَّنَتْ منْ تبلوُرِ اللابةِ على سطح الأرضِ.

الشكلُ (4): صخرُ البازلتِ الذي يُعَدُّ أحدَ الصخورِ الناريةِ السطحيةِ المُتكشَّفةِ في الأردنِّ.

تُصنَّفُ الصخورُ الناريةُ بحسبِ أماكنِ تبلوُرها إلى صخورٍ ناريةٍ جوفيةٍ وصخورٍ ناريةٍ سطحيةٍ. فالصخورُ التي تنشأُ نتيجةَ تبريدِ الماغما ببطءٍ في باطنِ الأرضِ تُسمّى الصخورَ الناريةَ الجوفية Intrusive ببطءٍ في باطنِ الأرضِ تُسمّى الصخورُ الناريةَ الجوفية Igneous Rocks، ومنْ أمثلتِها صخرُ الغرانيتِ. أمّا الصخورُ التي تنشأُ بفعلِ تبريدِ اللابةِ بصورةٍ سريعةٍ على سطحِ الأرضِ فتُسمّى الصخورَ بفعلِ تبريدِ اللابةِ بصورةٍ سريعةٍ على سطحِ الأرضِ فتُسمّى الصخورَ الناريةَ السطحية Extrusive Igneous Rocks، أنظرُ الشكلَ (3)، ومنْ أمثلتِها صخورُ البازلتِ.

تتكشَّفُ الصخورُ الناريةُ الجوفيةُ في جنوبِ الأردنِّ، وبخاصةٍ الصخورُ الغرانيتيةُ. أمَّا الصخورُ الناريةُ السطحيةُ، ولا سيما الصخورُ البازلتيةُ، فتوجدُ في مناطقَ عِدَّةٍ منَ الأردنِّ، مثل: المناطقِ الشماليةِ الشرقيةِ، والمناطقِ الوسطى، أنظرُ الشكلَ (4).


◄ أتحقَّقُ أُفسِّرُ سببَ اختلافِ اللّابةِ عنِ الماغما بالرغمِ منْ أَنَّهُما يُمثِّلانِ صخورًا مصهورةً.

أشكالُ الصخور الناريةِ Igneous Rocks Landforms

توجدُ الصخورُ الناريةُ الجوفيةُ بأشكالٍ مختلفةٍ في الطبيعةِ، مثلِ: الباثوليثِ Batholith، وهوَ أكبرُ الأجسامِ الصخريةِ الجوفيةِ، وقدْ يمتدُّ لمئاتِ الكيلومتراتِ، واللاكوليثِ Laccolith، وهوَ أحدُ أشكالِ الصخورِ الناريةِ الأصغرُ حجمًا منَ الباثوليثِ، ويوجدُ قربَ سطحِ الأرضِ، ويكونُ مُدبَّبَ الشكلِ منَ الأعلى. ومنْها أيضًا القواطعُ الناريةُ الأرضِ، ويكونُ مُدبَّبَ الشكلِ منَ الأعلى. ومنْها أيضًا القواطعُ الناريةُ Oykes، وهيَ صخورٌ ناريةٌ تتبلورُ في الشقوقِ الصخريةِ أو الصدوعِ، وتقطعُ الصخورَ بشكلِ عموديٍّ أوْ مائل، ويُطلَقُ عليْها اسمُ المُندَسَّةِ الناريةِ الناريةِ الناريةِ الناريةِ الطبقاتِ.

أمّا الصخورُ الناريةُ السطحيةُ فتوجدُ على شكلِ براكينَ مختلفةِ الأنواعِ، أوْ في صورةِ طفوح بركانيةٍ (حَرّاتٌ) Flood Basalts، وهي صخورٌ تتصلّبُ منَ اللابةِ المُتدفِّقةِ منَ الشقوقِ، وتمتدُّ لمساحاتٍ واسعةٍ، أنظرُ الشكلَ (5) الذي يُبيِّنُ أشكالَ الصخورِ الناريةِ في الطبيعةِ.

الشكلُ (5): أشكالُ الصخورِ الناريةِ السطحيةِ والجوفيةِ في الطبيعةِ. أُقارِنُ بينَ الباثوليثِ واللاكوليثِ منْ حيثُ الحجمُ.

نجرة 1

علاقة معدَّلِ التبريدِ بحجم البلّوراتِ

لماذا تمتازُ الصخورُ الناريةُ الجوفيةُ بكِبرِ حجمِ بلوراتِها خلافًا للصخورِ الناريةِ السطحيةِ التي تمتازُ بصغرِ حجمِ بلوراتها؟

الموادُّ والأدوات:

كبريتاتُ النحاسِ (CuSO4)، ماءٌ ساخنٌ، خيطٌ قطنيٌ، قلمُ رصاصٍ، وعاءانِ زجاجيانِ سعةُ كلِّ منهُما (300 ml)، ثلّجةٌ أوْ حافظةُ حرارةٍ، عدسةٌ مُكبِّرةٌ، ساعةُ توقيت، ميزانُ حرارةٍ، نظّاراتٌ واقيةٌ، قفافيزُ حراريةٌ، ملعقةٌ فازّيةٌ.

إرشادات السلامة:

- ارتداءُ النظّارةِ الواقيةِ والقُفّازيْنِ قبلَ البدءِ بتنفيذِ التجربة
 - الحذرُ منِ انسكابِ الماءِ الساخنِ على الجسمِ.
- غسلُ اليدينِ جيدًا بالماءِ والصابونِ بعدَ استخدامِ مادةِ كبريتاتِ النحاس.
- الحذر عندَ استخدامِ الوعاءيْنِ الزجاجييْنِ؛ خشية الإصابةِ بجروح في حالِ كسرِ أحدهِما أوْ كليْهِما.

خطوات العمل:

- 1. بالتعاونِ مع زملائي، أُحضِّرُ محلولًا مشبعًا منْ كبريتاتِ النحاس في الوعاءيْنِ باستخدام الماءِ الساخنِ.
- أضع أولًا في كلِّ وعاء (100 ml) من الماء الساخن، ثمَّ أُضيفُ تدريجيًّا كميّاتٍ متساويةً منْ كبريتاتِ النحاسِ في الوعاءيْن.
- 3. أُحرِّكُ المحلولَ في الوعاءيْنِ بالملعقةِ حتَّى يصبحَ المحلولُ في الوعاءيْنِ مشبعًا.

4. أضعُ في كلِّ وعاءٍ خيطًا مربوطًا بقلمٍ، وأجعلُ الخيطينِ الخيطَيتِ في الوعاءِ، بحيثُ ينغمرُ كلا الخيطيْنِ في المحلولِ المشبع، ثمَّ أطلبُ إلى زميلي تدوينَ الوقتِ ودرجةِ الحرارةِ في غرفةِ المختبر.

- 5. أتركُ أحدَ الوعاءيْنِ يبردُ في درجةِ حرارةِ الغرفةِ، وأضعُ الوعاءَ الآخرَ في الثلاجةِ، أوْ في الحافظةِ الحراريةِ.
- 6. أُراقِبُ تشكُّلَ البلّوراتِ على جوانبِ الوعاءيْنِ، وعلى الخيطِ في كلِّ منْهُما، ثمَّ أُدوِّنُ الوقت الذي بدأت فيهِ البلّوراتُ تتشكَّلُ، وأحرص على مراقبةِ عمليةِ تبريدِ الوعاءيْنِ في مُدَدٍ مُحدَّدةٍ.
- ألاحِظُ المحلولَ الذي بردَ على نحوٍ أسرعَ، ثمَّ أُدوِّ نُ نتائجي.
- 8. أرسم شكل البلورات التي أُشاهِدُها، ثمَّ أكتبُ وصفًا لها.

التحليل والاستنتاج:

- أقارِنُ بينَ حجمِ البلوراتِ في الوعاءيْنِ.
- 2. أحسنب الوقت الذي استغرقه تبلور كبريتات النحاس في الوعاءيْنِ.
- أستنتجُ العلاقةَ بينَ حجمِ البلوراتِ وسرعةِ التبلور.
- 4. أُفسِّرُ: لماذا تمتازُ البلوراتُ التي تبردُ سريعًا بصِغرِ حجمها؟

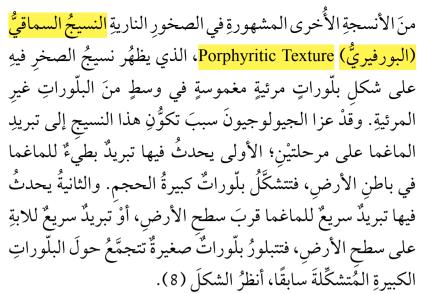
تصنيفُ الصخورِ الناريةِ Classification of Igneous Rocks

أشرْنا سابقًا إلى أنَّ الصخورَ الناريةَ تُصنَّفُ بحسبِ مكانِ تبلوُرِها إلى صخورٍ ناريةٍ جوفيةٍ تنشأُ في باطنِ الأرضِ، وصخورٍ ناريةٍ سطحيةٍ تنشأ على سطحِ الأرضِ، ولكنَّ العلماءَ يُصنِّفونَ الصخورَ الناريةَ أيضًا بناءً على سطحِ الأرضِ، منْها: النسيجُ، والتركيبُ الكيميائيُّ والمعدنيُّ. على خصائصَ أُخرى، منْها: النسيجُ، والتركيبُ الكيميائيُّ والمعدنيُّ. أولًا: النسيجُ Texture:

يصفُ النسيجُ Texture حجمَ البلّوراتِ، وشكلَها، وترتيبَها في داخلِ الصخرِ. وهوَ يرتبطُ بسرعةِ تبريدِ الماغما الذي يعتمدُ على مكانِ تبلورِ الصخرِ الناريِّ؛ فالصخورُ الناريةُ الجوفيةُ تمتازُ عامةً بكبرِ حجم بلّوراتِها، لذلكَ يكونُ نسيجُها خشنَ الحبياتِ Coarse Grained بلّوراتِها، لذلكَ يكونُ الصخورُ الناريةُ السطحيةُ ببلّوراتِ صغيرةِ الحجمِ لا تُرى بالعينِ المُجرَّدةِ، فيكونُ نسيجُها ناعمَ الحبياتِ Fine المحجمِ لا تُرى بالعينِ المُجرَّدةِ، فيكونُ نسيجُها ناعمَ الحبياتِ Grained أنظرُ الشكلَ (6).

عندَ تعرُّضِ اللابةِ المنسابةِ على سطح الأرضِ لتبريدٍ سريعٍ جدًّا، فإنَّ البلّوراتِ لا تتكوَّنُ فيها. وعوضًا عنْ ذلكَ، ترتبطُ ذرّاتُها بعضُها بعضٍ عشوائيًّا، وتتصلَّبُ مُكوِّنةً نسيجًا زجاجيًّا Glassy Texture، أنظرُ الشكلَ (7).

الشكل (6): صخرُ الغرانيتِ الذي يمتازُ بحبيباتِهِ الخشنةِ، وصخرُ الريوليت. أفسَّرُ لماذا نسيجُ الريوليتِ نسيجٌ ناعمُ الحيباتِ.


الشكلُ (7): النسيجُ الزجاجيُّ في صخرِ الأوبسيديانِ.

الشكلُ (8): النسيجُ السماقيُّ الذي يمتازُ بوجودِ بلّوراتٍ كبيرةِ الحجمِ محاطةٍ ببلّوراتٍ صغيرةِ الحجمِ.

الشكلُ (9): النسيجُ الفقاعيُّ الذي يمتازُ بوجودِ ثقوبٍ في الصخرِ الناريِّ نتيجةَ خروج الغازاتِ.

أمّا النسيحُ الفقاعيُّ Vesicular Texture فيتكوَّنُ نتيجةً لخروجِ الغازاتِ منَ اللابةِ وهيَ على سطحِ الأرضِ، فتتكوَّنُ مجموعةٌ منَ الفجواتِ أو الثقوبِ التي تُميِّزُ هذا النسيجَ، وهوَ ما يُمكِنُ أَنْ نَلحظَهُ في صخرِ الخفافِ، أنظرُ الشكلَ (9).

◄ أتحقَّقُ كيفَ يتكوَّنُ النسيخُ الزجاجيُّ؟

ثانيًا: التركيبُ الكيميائيُّ والمعدنيُّ السليكا والتركيبِ المعدنيِّ إلى تُصنَّفُ الصخورُ الناريةُ بناءً على نسبةِ السليكا والتركيبِ المعدنيِّ إلى أربعةِ أنواعٍ رئيسةٍ، هيَ: الصخورُ الفلسيةُ Felsic Rocks ، والصخورُ المافيةُ Mafic Rocks، والصخورُ المافيةُ المعدنيُّ والصخورُ المافيةُ Ultramafic Rocks، والصخورُ المافيةُ الشكلَ (10) الذي والصخورُ فوقَ المافيةِ Rocks، ونوعِ الصخورِ، ومكانِ التبلوُرِ. يُبيِّنُ العلاقةَ بينَ التركيبِ المعدنيِّ، ونوعِ الصخورِ، ومكانِ التبلوُرِ. أمّا الصخورُ الفلسيةُ فهي صخورُ ناريةٌ تحتوي على معادنَ غنيةٍ بالسليكا، مثل: الفلسبارِ البوتاسيِّ، والمسكوفيتِ، والكوارتزِ. وهي بالسليكا، مثلِ: الفلسبارِ البوتاسيِّ، والمسكوفيتِ، والكوارتزِ. وهي تمتازُ بألوانِها الفاتحةِ، ومنْ أشهر صخورها: الغرانيتُ، والريوليتُ.

سبارُ البوتاسيُّ الكوارتزُ	وكليز غنيًّ الصود	البلاجي الأمفيبولُ	غنيٌّ بالكال	الأولوفينُ	75— كونى // مريم المعادن // عرب المعادن // مريم // مر	
ليت	تُ الريوا	الأنديزيد	البازلتُ	الكوماتيتُ	صخورٌ سطحيةٌ	
يت	الغران	الديوريت	الغابرو	البيريدوتيتُ	صخورٌ جوفيةٌ	
رٌ فلسيةٌ	توسطةٌ صخو	صخورٌ م	صخورٌ مافيةٌ	صخورٌ فوقَ مافيةٍ	تصنيفُ الصخورِ	
80	63	52	45		السيليكا % اللونُ	
فاتح	عامقٌ رماديًّ فات غامقٌ عامقٌ					

وأمّا الصخورُ المتوسطةُ فهي صخورٌ ناريةٌ تحتوي على معادنَ سليكاتيةٍ متوسطةِ الغنى بالسليكا، وتكونُ ألوانُها بينَ الفاتحِ والغامقِ. وهي تتكوّنُ منْ معادنِ البلاجيوكليزِ الصوديِّ، والبيوتيتِ، والأمفيبولِ. ومنَ الأمثلةِ على هذهِ الصخورِ: صخورُ الديوريتِ، وصخورُ الأنديزيتِ.

وأمّا الصخورُ المافيةُ فهي صخورٌ غامقةُ اللونِ بسببِ احتوائِها على معادنَ غنيةٍ بالحديدِ والمغنيسيوم، مثل: معادنِ البلاجيوكليزِ الكلسيِّ الصوديِّ، ومعادنِ البيروكسينِ، والأمفيبولِ. ومنَ الأمثلةِ على هذهِ الصخور: صخورُ الغابرو، وصخورُ البازلتِ.

وأمّا الصخورُ فوقَ المافية فهي صخورٌ قاتمةٌ (شديدةُ الاسودادِ) تحتوي على نسبةٍ منخفضةٍ من السليكا، وتتكوّنُ في مجملِها منْ معادنِ الأوليفينِ، والبيروكسينِ. ومنْ أشهرِ الأمثلةِ عليْها: صخورُ البيريدوتيتِ، وصخورُ الكوماتيتِ، أنظرُ الشكلَ (11) الذي يُمثّلُ صخرَ البيريدوتيتِ.

المعدنيّ، مُبيّنًا على تركيبِهِ المعدنيّ، مُبيّنًا المعادنَ المُكوّنة لهُ.

الشكلُ (10): تصنيفُ الصخورِ الناريةِ بحسبِ تركيبِها المعدنيِّ، ونسبِ السليكا فيها، وأمثلةٌ على كلِّ نوعٍ منَ الصخورِ المجوفيةِ والصخورِ السطحيةِ.

الشكل (11): صخرُ البيريدوتيتِ الذي يُعَدَ أحدَ الصخور فوق المافيةِ.

مراجعة الدّرسِ

- 1. أُصنِّفُ الصخورَ الناريةَ بحسبِ مكانِ تبلوُرِها.
- 2. أُوضِّحُ كيفَ يُمكِنُ أَنْ يصبحَ الصخرُ الناريُّ صخرًا رسوبيًّا.
- 3. أَتَبَّعُ مراحلَ تكوُّنِ صخرِ البازلتِ منْ لحظةِ وجودِهِ في باطنِ الأرضِ حتَّى تصلُّبِهِ على سطح الأرضِ.
- 4. أُقارِنُ بينَ صخري الغرانيتِ والأنديزيتِ منْ حيثُ: حجمُ الحبيباتِ، ونسبةُ السليكا، واللونُ.
- 5. أستنتجُ خصائصَ صخرٍ تكوَّنَ على سطحِ الأرضِ، وكافأً في تركيبِ و تركيبَ صخرِ البيريدوتيتِ.
 - 6. أُصمِّمُ نموذجًا يُوضِّحُ كيفيةَ تكوُّنِ الصخورِ الناريةِ السطحيةِ على سطح الأرضِ.

الصخورُ الرسوبيةُ

Sedimentary Rocks

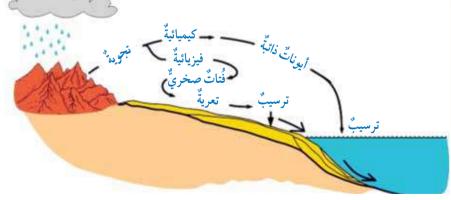
الفلرةُ الرئيسةُ:

تتكوَّنُ الصخورُ الرسوبيةُ نتيجةَ تصخُّرِ الرسوبياتِ على شكلِ طبقاتٍ متتاليةٍ.

نتاجاتُ التعلُم:

- أتعرَّفُ كيفَ تتكوَّنُ الصخورُ الرسوبيةُ.
 - أُصنِّفُ الصخورَ الرسوبيةَ.
- أُوضِّحُ معالمَ الصخورِ الرسوبيةِ.

المفاهية والمصطلحات:


Sediments الرسوبياتُ Compaction التراصُّ Cementation الالتحامُ التصخُّرُ Lithification الصخورُ الرسوبيةُ الفتاتيةُ الصخورُ الرسوبيةُ الكيميائيةُ Clastic Sedimentary Rocks الصخورُ الرسوبيةُ الكيميائيةُ الحيويةُ Chemical Sedimentary Rocks الصخورُ الرسوبيةُ الكيميائيةُ الحيويةُ Biochemical Sedimentary Rocks الطبقيةُ المُتدرِّجةُ Ripple Marks علاماتُ النيم Ripple Marks التشقُّقاتُ الطينيةُ الطينيةُ Mud Cracks

تكوُّنُ الصخور الرسوبيةِ Sedimentary Rocks Formation

تعرَّفْتُ سابقًا أنَّ الصخورَ الرسوبيةَ هيَ أحدُ أنواعِ الصخورِ التي تتشكَّلُ منْها القشرةُ الأرضيةُ.

تغطّي الصخورُ الرسوبيةُ ثلاثةَ أرباعِ سطحِ اليابسةِ تقريبًا، وتُشكِّلُ نحوَ 1/5 منْ حجمِ الصخورِ الكليِّ في القشرةِ الأرضيةِ، ويُمثِّلُ وجودُها أهميةً كبيرةً في حياتِنا. ولكنْ، كيفَ يتكوَّنُ هذا النوعُ منَ الصخور؟

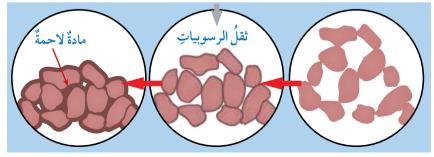
يبدأُ تكوُّنُ الصخورِ الرسوبيةِ منْ عمليةِ التجويةِ التي تعملُ على تفتيتِ الصخورِ والمعادنِ المُكوِّنةِ لها، وتكسيرِها، وتحليلِها، أنظرُ الشكلَ (12). يُمكِنُ تقسيمُ التجويةِ إلى نوعيْنِ رئيسيْنِ، هما: التجويةُ الفيزيائيةُ (الميكانيكيةُ) التي ينتجُ منها فتاتُ صخريُّ مُشابِهٌ في خصائصِهِ للصخورِ الأصليةِ، وتحدثُ غالبًا في المناطقِ الصحراويةِ الجافةِ، والتجويةُ الكيميائيةُ التي تؤدي إلى تكوُّنِ معادنَ جديدةٍ تختلفُ في خصائصِها عنِ المعادنِ المُكوِّنةِ للصخرِ الأصليقِ، وهي تحدثُ غالبًا في المناطقِ الرطبةِ المرافِقةِ.

الشّكلُ (12): مراحلُ تكوُّنِ الصخورِ الرسوبيةِ بفعلِ عملياتِ التجويةِ، والتعريةِ، والترسيبِ. أُحدِّدُ: أينَ تتكوَّنُ الصخورُ الرسوبيةُ؟

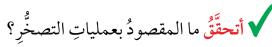
أَفْكِلَ يُقسِّمُ بعضُ الجيولوجيينَ التجوية إلى ثلاثة أنواع: كيميائية، وحيوية؛ كيميائية، وحيوية؛ إذْ تُسهِمُ الكائناتُ الحيةُ في تجوية الصخرِ.

ما علاقة الكائنات الحية بالتجوية الكيميائية، والتجوية الكيميائية، والتجوية

أُناقِشُ مُعلِّمي وزملائي في النتائجِ التي أتوصَّلُ إليْها.


يُؤثِّرُ نوعُ التجويةِ في نوعِ الصخرِ الرسوبيِّ المُتكوِّنِ، ولا تبقى الموادُ الناتجةُ منْ عملياتِ التجويةِ في مكانِها غالبًا؛ إذْ تُحرِّكُها عمليةُ التعريةِ عنْ طريقِ أحدِ عواملِ التعريةِ، مثل: المياهِ الجاريةِ، والرياحِ، والجليدياتِ، وتنقلُها إلى أماكنِ الترسيبِ (حوضُ الترسيبِ)، حيثُ تُلقي حمولتَها بعمليةِ الترسيبِ، ثمَّ تتراكمُ الرسوبياتُ Sediments، وتتصلَّبُ مُكوِّنةً الصخورَ الرسوبيةَ بمرورِ الزمنِ.

◄ أتحقَّقُ فيم يختلفُ أثرُ التجويةِ الفيزيائيةِ في الصخورِ عنْها في التجويةِ الكيميائيةِ؟


تحوُّلُ الرسوبياتِ إلى صخورٍ رسوبيةٍ

Transform of Sediments into Sedimentary Rocks

قدْ يتواردُ إلى الذهنِ السؤالُ الآتي: كيفَ تتحوَّلُ الرسوبياتُ إلى صخورٍ رسوبيةٍ؟ فيجابُ عنِ السؤالِ المطروحِ بالقولِ: تتعرَّضُ الرسوبيةِ في ما يُعرَفُ مجموعةٍ منَ العملياتِ، تعملُ على تكوينِ الصخورِ الرسوبيةِ، في ما يُعرَفُ بعملياتِ التصخُّرِ Lithification . فعندما تتراكمُ الرسوبياتُ فوقَ بعضِها على شكلِ طبقاتٍ، وبعدَ مُضِيِّ آلافِ السنينَ أوْ ملايينَ منْها، يعملُ الضغطُ الناتجُ منْ ثقلِ الرسوبياتِ على تقليصِ الفراغاتِ بينَ الحبيباتِ، فتصبحُ أقلَّ حجمًا، ويقلُّ سُمْكُ الطبقاتِ، في ما يُعرَفُ باسمِ التراصِّ Compaction . وقدْ تتخلَّلُ المحاليلُ المائيةُ الفراغاتِ الموجودةَ في الرسوبياتِ، فتترسَّبُ بعضُ الموادِّ المعدنيةِ التي تحملُها بينَ الفراغاتِ؛ ما يؤدي فتترسَّبُ بعضُ الموادِّ المعدنيةِ التي تحملُها بينَ الفراغاتِ؛ ما يؤدي إلى ترابطِ الحبيباتِ، والتحامِ بعضِها ببعضٍ، فتتحوَّلُ إلى مادةٍ صخريةٍ . وتُسمّى هذهِ العمليةُ الالتحامَ (13) الذي وتُسمّى هذهِ العمليةُ الالتحامَ (20) الذي يُمثِّلُ عملياتِ التصخُّر.

أ - الرسوبياتُ الأصليةُ. ب- الرسوبياتُ بعدَ تعرُّضِها للتراصِّ. ج- الرسوبياتُ بعدَ تعرُّضِها للالتحام.

الشّكلُ (13): عملياتُ التصخُّرِ في الصّخورِ الرسوبيةِ:

تصنيفُ الصخور الرسوبيةِ Classification of Sedimentary Rocks

تُصنَّفُ الصخورُ الرسوبيةُ تبعًا لكيفيةِ تكوُّنِها إلى ثلاثةِ أنواعِ رئيسةٍ، هي: الصخورُ الرسوبيةُ الفتاتيةُ الفتاتيةُ الفتاتية الفيزيائيةِ. التي تنشأُ منْ ترسُّبِ الفتاتِ الصخريِّ الناتجِ منَ التجويةِ الفيزيائيةِ. والصخورُ الرسوبيةُ الكيميائيةُ Chemical Sedimentary Rocks التي تنشأُ منْ ترسُّبِ الموادِّ الذائبةِ في أحواضِ الترسيبِ، مثلِ البحارِ، بعدَ ويادةِ تركيزِها. والصخورُ الرسوبيةُ الكيميائيةُ الحيويةُ الكيميائيةُ الحيويةُ الصَّلْبةِ؛ والصخورُ الرسوبيةُ الكيميائيةُ الحيويةُ الصَّلْبةِ؛ الحيوانيةِ أو النباتيةِ، وتصخُّرها.

الصخورُ الرسوبيةُ الفتاتيةُ Clastic Sedimentary Rocks

تنشأ الصخورُ الرسوبيةُ الفتاتيةُ بفعلِ تراكُمِ الفتاتِ الصخريِّ الناتجِ منْ عملياتِ التجويةِ الفيزيائيةِ للصخورِ المختلفةِ المُتكشِّفةِ على سطحِ الأرضِ، وهي تُصنَّفُ تبعًا لحجمِ حبيباتِها إلى أنواعٍ منَ الصخورِ، أشهرُها الصخرُ الرمليُّ. ويُبيِّنُ الجدولُ (1) العلاقةَ بينَ حجمِ الحبيباتِ ونوع الصخرِ الرسوبي الفتاتيِّ.

	العلاقةُ بينَ حجمِ الحبيباتِ ونوعِ الصخرِ الرسوبيِ الفتاتيِّ.			
اسمُ الصحر	انسيخ	اسمُ الراسبِ	حجمُ الحبيباتِ	
صخرُ الكونغلوميريتِ Conglomerate، أو البريشيا Breccia.		الحصباءُ.	2 mm <	
الصخرُ الرمليُّ Sandstone.		الرمك.	1/16 mm – 2 mm	
الصخرُ الغرينيُّ Siltstone.		الغرينُ.	1/ 256 mm - 1/16 mm	
صخرُ الغضارِ Shale. الصخرُ الطينيُّ Mudstone.		الطينُ.	< 1/256 mm	

الشكلُ (14): صخرُ الكونغلوميريتِ، وصخرُ البريشيا اللذانِ يزيدُ حجمُ حبيباتِ كلِّ منْهُما على (2mm).

منَ الأمثلةِ على الصخورِ الرسوبيةِ الفتاتيةِ التي يزيدُ حجمُ الحبيباتِ فيها على (2mm): صخرُ الكونغلوميريتِ منْ صخرِ البريشيا Breccia. يمتازُ صخرُ الكونغلوميريتِ منْ صخرِ البريشيا باستدارةِ حبيباتِهِ، ويعزو الجيولوجيونَ سببَ ذلكَ إلى نقلِ الفتاتِ الصخريِّ المُكوِّنِ لهُ مسافةً طويلةً منْ مكانِ تجويةِ الصخرِ الأصليِّ حتى مكانِ الترسيبِ؛ ما يؤدي إلى حَتِّ حوافِ الحبيباتِ كما في الشكلِ (14/أ)، خلافًا لصخرِ البريشيا ذي الحبيباتِ المزواةِ الذي لمْ تُنقَلْ حبيباتِ المزواةِ الذي لمْ

الشّكلُ (15): الصخرُ الرمليُّ، وصخرُ الغضارِ اللذانِ يقلُّ حجمُ حبيباتِ كلِّ منْهُما عنْ (2mm).

أُقارِنُ بينَ الصخرِ الرمليِّ وصخرِ الغضارِ منْ حيثُ حجمُ الحبيباتِ.

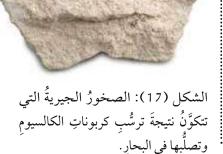
أمّا الصخرُ الرمليُّ فيمتازُ بحبيباتِهِ جيدةِ الاستدارةِ، التي يُمكِنُ رؤيتُها بالعينِ المُجرَّدةِ كما في الشكلِ (15/أ)، خلافًا لحبيباتِ صخرِ الغضارِ التي لا يُمكِنُ تمييزُها بسببِ صِغرِ حجمِها، أنظرُ الشكلَ (15/ب).

الصخورُ الرسوبيةُ الكيميائيةُ Chemical Sedimentary Rocks

تعرَّفْتُ في صفوفِ سابقةٍ أنَّ منْ نواتجِ التجويةِ الكيميائيةِ إذابةً بعضِ المعادنِ التي تُكوِّنُ الصخورَ، وتأخذُ شكلَ أيوناتٍ تُنقَلُ معَ الماءِ إلى حوضِ الترسيبِ، حيثُ تتفاعلُ معَ بعضِها مُكوِّنةً موادَّ جديدةً، مثلَ كربوناتِ الكالسيومِ. وعندما يزدادُ تركيزُ هذهِ الموادِّ، ويصبحُ الماءُ مشبعًا بها، فإنَّها تترسَّبُ، وتتراكمُ. وبمرورِ الزمنِ تتكوَّنُ الصخورُ الرسوبيةُ الكيميائيةُ، التي منْها بعضُ أنواعِ الصخورِ الجبسِ، أنظرُ الجيريةِ، مثلُ: الترافرتينِ؛ والملحِ الصخريِّ، وصخرِ الجبسِ، أنظرُ الشكلَ (16).

الشكلُ (16): صخرُ الجبسِ الذي يُعَدُّ أحدَ الصخورِ الرسوبيةِ الكيميائيةِ.

الربطُ بالكيمياءِ


* تتفاعلُ أيوناتُ الكالسيومِ (Ca⁺²) معَ مجموعةِ الهيدروكسيدِ الأيونيةِ (Ca(OH)2) لتكوينِ مُركَّبِ هيدروكسيدِ الكالسيومِ (Ca(OH)2) حيثُ يتفاعلُ مُركَّبُ هيدروكسيدِ الكالسيومِ وثاني أكسيدِ الكربونِ حيثُ يتفاعلُ مُركَّبُ هيدروكسيدِ الكالسيومِ (CaCO3) والماءِ (H2O) وفقَ (CO2) لتكوينِ كربوناتِ الكالسيومِ (CaCO3) والماءِ (H2O) وفقَ المعادلتيْنِ الآتيتيْنِ:

$$Ca^{+2} + 2(OH^{-1}) \longrightarrow Ca(OH)_2$$

$$CO_2 + Ca(OH)_2 \longrightarrow CaCO_3 + H_2O$$

تترسَّبُ كربوناتُ الكالسيومِ الناتجةُ في حوضِ الترسيبِ (البحرُ). وبمرورِ الزمنِ تتراكمُ هذهِ الرسوبياتُ، وتتصلَّبُ مُكوِّنةً صخورًا جيريةً، أنظرُ الشكلَ (17).

يُمكِنُ تعرُّفُ خصائصِ الصخورِ الرسوبيةِ الكيميائيةِ بتنفيذِ التجربةِ الآتية.

* المعادلتانِ للاطِّلاعِ فقطْ.

أخرية 2

الصخورُ الرسوبيةُ الكيميائيةُ

الموادُّ والأدوات:

صخورٌ رسوبيةٌ كيميائيةٌ مختلفةٌ (ملحٌ صخريٌ، جبسٌ، دولوميتُ، صخرٌ جيريٌ)، حمضُ الهيدروكلوريكِ (HCl) المُخفَّفُ، عدسةٌ مُكبِّرةٌ، مِطْرقةٌ، قَطَّارةٌ، أدواتُ تحديدِ القساوةِ.

إرشادات السلامة:

- الحذرُ في أثناءِ استعمالِ حمضِ الهيدروكلوريكِ المُخفَّف، والمطرقة.
- غسلُ اليدينِ جيدًا بالماءِ والصابونِ بعدَ الانتهاءِ منْ تنفيذِ التجربةِ.

خطوات العمل:

- أتفحَّصُ العيِّناتِ الصخريةَ بالعينِ المُجرَّدِة، وباستعمالِ
 العدسةِ المُكبِّرةِ، ثمَّ أُدوِّنُ لونَ الصخرِ ونسيجَة.
- 2 أضعُ قطرةً منْ حمضِ الهيدروكلوريكِ المُخفَّفِ على كلِّ عيِّنةٍ صخريةٍ، مُلاحِظًا ما يحدثُ، ثمَّ أُدوِّنُ ملاحظاتي.
- 3 أفحصُ قساوةَ العيناتِ الصخريةِ (أيُّها قاسٍ؟ أيُّها ليِّنٌ؟)، ثمَّ أُدوِّنُ ملاحظاتي.

- 4 أستخدمُ شبكةَ الإنترنتُ في الحصولِ على صورِ لشرائحَ رقيقةٍ (Thin Section) تظهرُ تحتَ المِجْهرِ المستقطب، وتُمثّلُ كلَّ صخرٍ منَ الصخورِ التي فُحِصَتْ.
- 5 أُلاحِظُ المعادنَ المُكوِّنةَ للصخورِ في هذهِ الصورِ منْ
 حيثُ حجومُها وألوانُها، ثمَّ أُدوِّنُ ذلكِ.

التحليل والاستنتاج:

- 1 أستنتج: باستعمالِ العينِ المُجرَّدةِ أو العدسةِ المُكبِّرةِ،
 هلْ يُمكِنُ تصنيفُ الصخورِ الرسوبيةِ الكيميائيةِ بناءً
 على حجم الحبيبات؟ أذكرُ السبب.
- 2 أُقارِنُ بينَ العيناتِ الصخريةِ؛ أيُها تفاعلَتْ معَ حمض ِ الهيدروكلوريكِ المُخفَّفِ بصورةٍ كبيرةٍ؟ أيُها لمْ تتفاعلُ مع هذا الحمض؟
 - 3 أُقارِنُ بينَ العيِّناتِ الصخريةِ منْ حيثُ القساوةُ.
- 4 أُفْسِّرُ: أَيُّهُما أكثرُ دقَّةً: تصنيفُ الصخورِ بعدَ در استِها تحتَ المِجْهر أَمْ بالعين المُجرَّدةِ والعدسةِ المُكبِّرةِ؟

تُصنَّفُ الصخورُ الرسوبيةُ الكيميائيةُ تبعًا لتركيبِها الكيميائيِّ منَ المعادنِ؟ إذْ إنَّ لكلِّ صخرٍ رسوبيٍّ كيميائيٍّ مُكوِّناتٍ معدنيةً خاصةً بهِ، مثلَ الملحِ الصخريِّ الذي يتكوَّنُ بصورةٍ رئيسةٍ منْ معدنِ الهاليتِ. تمتازُ الصخورُ الرسوبيةُ الكيميائيةُ بحبيباتِها الناعمةِ التي لا يُمكِنُ تمييزُها بالعينِ المُجرَّدةِ، وهي تختلفُ في خصائصِها، مثلِ: القساوةِ، واللونِ، وشِدَّةِ التفاعل معَ الحموض.

الصخورُ الرسوبيةُ الكيميائيةُ الحيويةُ

Biochemical Sedimentary Rocks

تتكوَّنُ هذهِ الصخورُ منْ رسوبياتٍ نتجَتْ بفعلِ عملياتٍ حيويةٍ؛ إذّ تأخذُ الكائناتُ الحيةُ البحريةُ المعادنَ الذائبةَ في الماءِ لتُكوِّنَ الجزءَ الصُّلْبَ منْ أجسامِها. وعندَ موتِ هذهِ الكائناتِ، فإنَّ هياكلَها الصُّلْبة تترسَّبُ في قاعِ حوضِ الترسيبِ. وبمرورِ الزمنِ تتراكمُ هذهِ الرسوبياتُ، وتتصخَّرُ مُكوِّنةً صخورًا رسوبيةً كيميائيةً حيويةً. منْ أهمِّ أنواعِ هذهِ الصخورِ: الفوسفاتُ الذي يتكوَّنُ منْ تراكمِ بقايا عظامِ الكائناتِ البحريةِ، والفحمُ الحجريُّ الذي يتكوَّنُ منْ تراكمِ يتكوَّنُ في معظمِهِ منْ بقايا أصدافِ مجهريةٍ لكائناتٍ حيةٍ مُكوَّنةٍ يتكوَّنُ منْ كربوناتِ الكالسيومِ، والكوكينا الذي يتكوَّنُ منْ بقايا أصدافِ من تجمُّعِ أصدافِ سليكاتيةٍ الكائناتِ حيةٍ دقيقةٍ مثلِ الدياتومِ في البيئاتِ البحريةِ، أنظرُ الشكلَ لكائناتِ حيةٍ دقيقةٍ مثلِ الدياتومِ في البيئاتِ البحريةِ، أنظرُ الشكلَ لكائناتِ حيةٍ دقيقةٍ مثلِ الدياتومِ في البيئاتِ البحريةِ، أنظرُ الشكلَ لكائناتِ حيةٍ دقيقةٍ مثلِ الدياتومِ في البيئاتِ البحريةِ، أنظرُ الشكلَ لكائناتِ حيةٍ دقيقةٍ مثلِ الدياتومِ في البيئاتِ البحريةِ، أنظرُ الشكلَ لكائناتِ حيةٍ دقيقةٍ مثلِ الدياتومِ في البيئاتِ البحريةِ، أنظرُ الشكلَ الذي يُبيِّنُ بعضَ أنواعِ الصخورِ الرسوبيةِ الكيميائيةِ الحيويةِ.

الشكلُ (18): بعضُ أنواعِ الصخورِ الرسوبية الكيميائيةِ الحيويةِ.

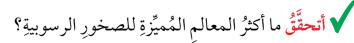
معالمُ الصخور الرسوبيةِ Features of Sedimentary Rocks

تنفردُ الصخورُ الرسوبيةُ بمعالمَ عِدَّةٍ تُميِّزُها عنْ غيرِها منَ الصخورِ، ويستفيدُ منْها الجيولوجيونَ في تعرُّفِ بيئةِ تكوينِها. منْ أهمِّ هذهِ المعالم:

التطبيق Bedding

تمتازُ الصخورُ الرسوبيةُ بوجودِها على شكلِ طبقاتٍ متتاليةٍ مختلفةِ الشُّمْكِ. ومنْ أشهرِ أنواعِ التطبُّقِ التطبُّقُ المُتدرِّجُ Graded Bedding؟ فكلَّما اتَّجهْنا إلى أسفلِ الطبقةِ ازدادَ حجمُ الحبيباتِ المُكوِّنةِ لها.

المحتوى الأحفوريُّ Fossil Content


تمتازُ الصخورُ الرسوبيةُ منْ بقيةِ أنواعِ الصخورِ الأُخرى بقدرتِها على الاحتفاظِ بالأحافيرِ، وهيَ بقايا وآثارٌ لكائناتٍ حيةٍ عاشَتْ في ما مضى، وقدِ استفادَ منْها العلماءُ في تعرُّفِ تاريخِ الطبقاتِ الجيولوجيِّ، والبيئاتِ، والمناخ السائدِ وقتَ تكوُّنِها.

علاماتُ النيم Ripple Marks

هي تموُّ جاتُّ صغيرةٌ تكوَّنت بفعلِ مياهِ الأنهارِ، أو الأمواجِ البحريةِ، أو الرياحِ، وحُفِظَتْ على بعضِ سطوحِ طبقاتِ الصخورِ الرسوبيةِ. وقدِ استدلَّ الجيولوجيونَ منْ توافرِ علاماتِ النيمِ في الصخورِ الرسوبيةِ على بيئةِ الترسيبِ التي سادَتِ المنطقةَ (هلْ هي نهريةٌ أمْ بحريةٌ شاطئيةٌ ضحلةٌ؟)، وعلى اتجاهِ التيارِ الناقلِ.

التشقُّقاتُ الطينيةُ Mud Cracks

تنتجُ التشقُّقاتُ الطينيةُ عندما تجفُّ الرسوبياتُ الطينيةُ، فتنكمشُ المعادنُ المُكوِّنةُ لها مُسبِّبةً وجودَ تشقُّقاتٍ. وعندَ ترسُّبِ موادَّ مختلفةٍ منْها تمتلئ الشقوقُ بتلكَ الموادِّ، وتحتفظُ بشكلِها. تشيرُ هذهِ التشقُّقاتُ إلى تعرُّضِ الرسوبياتِ للجفافِ، أنظرُ الشكلَ (19) الذي يُمثِّلُ بعضَ المعالم المُميِّزةِ للصخورِ الرسوبيةِ.

أ- التطبُّقُ المُتدرِّجُ.

ب- علاماتُ النيم.

ج- التشقُّقاتُ الطينيةُ.

الشكلُ (19): بعضُ المعالمِ المُميِّزةِ للصخورِ الرسوبيةِ.

مراجعة الدّرس

- أوضِّے كيف تُصنَّفُ الصخورُ الرسوبيةُ الفتاتيةُ، ثمَّ أذكرُ مثالًا على صخرٍ رسوبيًّ فتاتيِّ.
- 2. **أُقارِنُ** بينَ الصخورِ الرسوبيةِ الفتاتيةِ والصخورِ الرسوبيةِ الكيميائيةِ منْ حيثُ طريقةُ التكوُّنِ.
 - 3. أُوضِّحُ العلاقةَ بينَ التعريةِ وتكوُّنِ الصخورِ الرسوبيةِ الفتاتيةِ.
- 4. أستنتج: ماذا يُمكِنُ أَنْ يستخلصَ الجيولوجيونَ منْ وجودِ التطبُّقِ المُتدرِّجِ في إحدى الطبقاتِ الرسوبيةِ؟
 - 5. أُفسِّرُ العبارةَ الآتيةَ:
 - "تُسهِمُ عمليةُ الالتحامِ في زيادةِ قوَّةِ الصخرِ الرسوبيّ".

الصخورُ المُتحوِّلةُ

Metamorphic Rocks

الفلرةُ الرّئيسةُ:

تتكوَّنُ الصخورُ المُتحوِّلةُ منْ صخورٍ ناريةٍ، أوْ رسوبيةٍ، أوْ مُتحوِّلةٍ تعرَّضَتْ لعواملَ عِدَّةٍ، منْها: الضغطُ، والحرارةُ، والمحاليلُ الحرمائيةُ.

نتاجاتُ التعلُم: **◄**

- أُتقِنُ تحديدَ العواملِ التي تؤدي إلى تكوُّنِ الصخورِ المُتحوِّلةِ.
 - أُصنِّفُ الصخورَ المُتحوِّلةَ.
- أُقارِنُ بينَ أنواعِ الصخورِ المُتحوِّلةِ منْ حيثُ الخصائصُ.
- أُبيِّنُ دورَ الصخورِ في دعمِ الاقتصادِ المحليِّ.

المفاهية والمصطلحات:

التحوُّلُ Metamorphism

تحوُّلُ بالدفنِ Burial Metamorphism تحوُّلُ إقليميُّ

Regional Metamorphism

تحوُّلُ بالتَّماس

Contact Metamorphism

تورُّقُ Foliation

غيرُ مُتورِّقِ Non-Foliated

أنواغ التحوُّلِ Types of Metamorphism

درسْتُ سابقًا في موضوعِ (دورةُ الصخورِ) أنَّ الصخورَ تنصهرُ، ثمَّ تتحوَّلُ إلى ماغما عند تعرُّضِها لدرجاتِ حرارةٍ عاليةٍ أكبرَ منْ درجةِ انصهارِ المعادنِ المُكوِّنةِ لها. ولكنْ، إذا كانَتْ درجةُ الحرارةِ التي تتعرَّضُ لها الصخورُ أقلَ منْ درجةِ الانصهارِ، فإنَّها تتحوَّلُ إلى صخورٍ منْ نوع آخرَ.

يُعرَّفُ التحوُّلُ Metamorphism بأنَّهُ التغيَّرُ الذي يطرأُ على نسيج الصخرِ، أوْ تركيبِهِ المعدنيِّ، أوْ كليْهِما وهوَ في الحالةِ الصُّلْبةِ، مُنتِجًا بذلكَ صخورًا جديدةً تُعرَفُ باسمِ الصخورِ المُتحوِّلةِ Metamorphic Rocks. فما عواملُ التحوُّلِ؟ ما أنواعُ التحوُّل؟

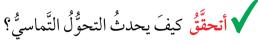
تُعَدُّ الحرارةُ أحدَ أهمِّ عوامل التحوُّلِ، وهيَ تنشأُ نتيجةَ دفنِ الصخرِ الأصليِّ في أعماقٍ كبيرة بباطنِ الأرضِ، أوْ بسببِ ملامسةِ الصخرِ ماغما مُندفِعةً منْ باطنِ الأرضِ، حيثُ تعملُ الحرارةُ على إضعافِ الروابطِ الكيميائيةِ بينَ الأيوناتِ والذرّاتِ المُكوِّنةِ للمعادنِ، ثمَّ تسهيلِ حركةِ الأيوناتِ وانتقالِها منْ معدنٍ إلى آخرَ، فتتكوَّنُ معادنُ جديدةُ؛ ما يتسبَّبُ في تكوُّنِ صخرٍ مُتحوِّلٍ جديدٍ.

أمّا العاملُ الثاني فهوَ الضغطُ الذي ينشأُ إمّا بسببِ الدفنِ في باطنِ الأرضِ، وكلّما ازدادَ العمقُ ازدادَ الضغطُ بفعلِ وزنِ الصخورِ المحيطةِ، وإمّا بسببِ تصادم الصفائحِ الأرضيةِ المُتقارِبةِ التي تتسبّبُ في تكوُّنِ السلاسلِ الجبليةِ. كما تُسهِمُ المحاليلُ المائيةُ الحارةُ (الحرمائيةُ) أيضًا بفاعليةٍ في عملياتِ التحوُّلِ؛ إذْ تساعدُ على إعادةِ تبلؤرِ المعادنِ المُكوِّنةِ للصخرِ.

توجدُ أنواعٌ مُتعدِّدةٌ منَ التحوُّلِ، يعتمدُ كلُّ منْها على عاملِ التحوُّلِ المُؤثِّرِ فيها. ومنْ هذهِ الأنواع: التحوُّلُ بالدفنِ، والتحوُّلُ الجرمائيُّ. الإقليميُّ، والتحوُّلُ الحرمائيُّ.

التحوُّلُ بالدفن Burial Metamorphism

يحدثُ <mark>التحوُّل بالدفن Burial Metamorphism</mark> نتيجةَ دفن الصخورِ الرسوبيةِ في أعماقِ كبيرةٍ بباطن الأرض، حيثُ تتعرَّضُ الصخورُ لدرجاتِ حرارةٍ وضغطٍ مرتفعين؛ ما يتسبَّبُ في بدءِ عمليةِ التحوُّلِ، ثمَّ إنتاج صخورٍ مُتحوِّلةٍ.


التحوُّلُ الإقليميُّ Regional Metamorphism

يحدثُ التحوُّلِ الإقليميِّ Regional Metamorphism مصاحبًا لحدودِ الصفائح الأرضيةِ المتقاربةِ؛ إذْ يُؤثِّرُ الضغطُ والحرارةُ المرتفعانِ في مساحةٍ واسعةٍ منَ الصخورِ، ما يتسبَّبُ في إعادةِ تبلؤرِ المعادنِ المُكوِّنةِ لها، وتكوين معادنَ جديدةٍ، فتنتجُ صخورٌ جديدةٌ تمتازُ بنسيجِها الذي يكونُ على شكلِ طبقاتٍ رقيقةٍ بسببِ تأثيرِ الضغطِ والحرارةِ.

منْ أشهر الصخور المُتحوِّلةِ التي تنجمُ عن التحوُّلِ الإقليميِّ: صخورُ الشيستِ، وصخورُ النايسِ، أنظرُ الشكلَ (20) الذي يُمثِّلُ أحدَ هذهِ الصخور.

التحوُِّلُ التَّماسيُّ Contact Metamorphism

يحدثُ التحوُّلُ بالتَّماسِ Contact Metamorphism عندما تلامسُ الماغما المُندفِعةُ منْ باطن الأرض - في أثناءِ حركتِها- صخورًا قديمةً تكونُ قريبةً منْها، أوْ تمرُّ خلالَها، فترتفعُ درجةُ حرارةِ الصخورِ؛ ما يؤدي إلى حدوثِ تغيُّرٍ في تركيبِها المعدنيِّ، فتتحوَّلُ إلى صخورٍ منْ نوع آخرَ. يكونُ التحوُّلُ التَّماسيُّ محدودًا مقارنةً بالتحوُّلِ الإقليميِّ، ومنْ أمثلتِهِ الرخامُ الذي ينتجُ منْ تحوُّلِ الصخرِ الجيريِّ كما في الشكلِ (21).

الشكلُ (20): صخرُ الشيستِ الذي يتكوَّ نُ نتيجةَ التحوُّل الإقليميِّ.



درجاتُ التحوُّلِ Grades of Metamorphism

تنعرَّضُ الصخورُ المُتحوِّلةُ لدرجاتٍ مختلفةٍ منَ الحرارةِ، أو الضغطِ، أوْ كليْهِما معًا؛ ما يؤدي إلى تكوُّنِ صخورٍ مُتنوِّعةٍ تختلفُ عنْ بعضِها في التركيبِ المعدنيِّ والنسيجِ، ويُسمّى هذا الاختلافُ درجاتِ التحوُّلِ. فمثلًا، عندما يتعرَّضُ صخرُ الغضارِ Shale الرسوبيُّ إلى ضغطٍ وحرارةٍ قليليْنِ نسبيًا، بحيثُ تتراوحُ درجةُ الحرارةِ بينَ (°2 200 °C)، قليليْنِ نسبيًا، بحيثُ تتراوحُ درجةُ الحرارةِ بينَ (°2 200 °C)، ويكونُ الضغطُ منخفضًا، فإنّهُ يتحوَّلُ إلى صخرٍ آخرَ يُسمّى الأردوازَ ويكونُ الضغطُ منخفضًا، فإنّهُ يتحوَّلُ إلى صخرٍ آخرَ يُسمّى الأردوازَ (22) الذي يُبيّنُ درجاتِ التحوُّلِ في هذهِ الحالةِ منخفضةً، أنظرُ الشكلَ (22) الذي يُبيّنُ درجاتِ التحوُّلِ المختلفةَ وعلاقتَها بالحرارةِ والضغطِ.

عندَ زيادةِ درجةِ التحوُّلِ يتكوَّنُ صخرٌ جديدٌ يُسمّى الفيليتَ Phyllite وهو يختلفُ عنْ صخرِ الأردوازِ بزيادةِ حجم بلّوراتِ المعادنِ المُكوِّنةِ لهُ. وعندما تكونُ درجةُ التحوُّلِ متوسطةً يتكوَّنُ صخرُ الشيستِ Schist الذي يمتازُ بنسيجِهِ المُتورِّقِ، وتصبحُ المعادنُ المُكوِّنةُ لهُ أكبرَ حجمًا، ويُمكِنُ رؤيتُها بالعينِ المُجرَّدةِ. أمّا في درجاتِ التحوُّلِ العليا فإنَّ المعادنَ تتمايزُ على شكلِ تتابعاتٍ لشرائطَ غامقةٍ وفاتحةِ اللونِ، ويتكوَّنُ صخرُ النايسِ على شكلِ تتابعاتٍ لشرائطَ غامقةٍ وفاتحةِ اللونِ، ويتكوَّنُ صخرُ النايسِ Gneiss، وتتكوَّنُ فيهِ معادنُ جديدةٌ مثلُ الأمفيبولِ.

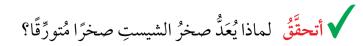
التحقَّقُ أَصِفُ منَ الشكلِ درجاتِ الحرارةِ والضغطِ التي تمتازُ بها درجةُ التحوُّلِ المنخفضةُ.
صخورٌ رسوبيةٌ

تُعَدُّ المحاليلُ المائيةُ الحارةُ (الحرمائيةُ) أحدَ عواملِ التحوُّلِ المُؤتِّرةِ في الصخورِ. مستعينًا بمصادرِ المعرفةِ المتوافرةِ، أُحدِّدُ كيفَ تعملُ هذهِ المحاليلُ على تحوُّلِ الصخورِ، مُبينًا على تحوُّلِ الصخورِ، مُبينًا علاقتَها بأنواع التحوُّلِ الأُخرى.

الشكلُ (22): درجاتُ التحوُّلِ في الصخورِ المُتحوِّلةِ. المُتحوِّلةِ. أيُّ الصخورِ تتكوَّنُ في أعلى درجة تحوُّل؟

تصنيفُ الصخورِ المُتحوِّلةِ Classification of Metamorphic Rocks

تُصنَّفُ الصخورُ المُتحوِّلةُ تبعًا لنسيجِها ومُكوِّناتِها المعدنيةِ إلى مجموعتيْنِ رئيستيْنِ، هما: الصخورُ المُتحوِّلةُ المُتورِّقةُ المُتحوِّلةُ المُتحوِّلةُ عيرُ Foliated Metamorphic Rocks، والصخورُ المُتحوِّلةُ غيرُ المُتورِّقةِ Non-Foliated Metamorphic Rocks.


الصخورُ المُتحوِّلةُ المُتورِّقةُ Foliated Metamorphic Rocks

صخورٌ تتكوَّنُ بتأثيرِ الحرارةِ المرتفعةِ والضغطِ المُوجَّهِ Pressure وهوَ الضغطُ الذي لا يكونُ متساويًا في الاتجاهاتِ جميعِها، ويُرافِقُ عادةً عمليةَ التحوُّلِ الإقليميِّ Regional Metamorphism. في هذا النوعِ منَ التحوُّلِ تترتَّبُ بلّوراتُ بعضِ المعادنِ المُكوِّنةِ للصخرِ بشكلٍ مُتعامِدٍ معَ اتجاهِ الضغطِ المُؤثِّرِ فيهِ، فتظهرُ المعادنُ على شكل طبقاتٍ رقيقةٍ، ويُعرَفُ هذا النسيجُ باسم التورُّقِ Foliation، ويُعدَّ الشيستِ واحدًا منَ الصخورِ المُتورَّقةِ.

عندَ زيادةِ الضغطِ والحرارةِ تنفصلُ المعادنُ الغامقةُ عنِ المعادنِ الفاتحةِ، فيظهرُ الصخرُ على شكلِ شرائطَ مُميَّزةٍ فاتحةٍ وغامقة اللونِ، ومنْ أمثلتِهِ صخرُ النايس، أنظرُ الشكلَ (23).

الصخورُ المُتحوِّلةُ غيرُ المُتورِّقةِ المرتفعةِ والضغطِ المنخفضِ، أو صخورٌ تتكوَّنُ بتأثيرِ الحرارةِ المرتفعةِ والضغطِ المنخفضِ، أو الضغطِ المحصورِ Uniform Pressure، وهوَ الضغطُ المتساوي في الاتجاهاتِ جميعِها، وهيَ تنشأُ عادةً منَ التحوُّلِ التَّماسيِّ قربَ اندفاعاتِ الماغما، أو التحوُّلِ الإقليميِّ. يمتازُ هذا النوعُ منَ الصخورِ باحتوائِهِ على معادنَ ذاتِ بلوراتٍ متساويةٍ في الحجم، مثلِ بلوراتِ بالكوارتز والكالسيتِ، ولها نسيجٌ غيرُ مُتورِّقِ Non-Foliated.

بوجه عامٍّ، يتكوَّنُ هذا النوعُ منَ الصخورِ المُتحوِّلةِ منْ معدنٍ واحدٍ فقطْ، ومنْ أمثلتِهِ صخرُ الرخامِ الناتجُ منْ تحوُّلِ الصخرِ الجيريِّ الذي يتكوَّنُ منْ معدنِ الكالسيتِ، وصخرُ الكوارتزيتِ الناتجُ منْ تحوُّلِ الصخرِ الرمليِّ الذي يتكوَّنُ منْ معدنِ الكوارتزِ، أنظرُ الشكلَ (24).

الشكل (23): عندَ تعرُّضِ الصخورِ، مثلِ الغرانيتِ، لضغطٍ مُوجَّهٍ كبيرٍ في التحوُّلِ الإقليميِّ، يعادُ ترتيبُ المعادنِ المُكوِّنةِ للصخرِ الأصليِّ، فيتحوَّلُ إلى نوعٍ جديدٍ منَ الصخورِ مثلِ النايسِ.

الشكلُ (24): صخرُ الكوارتزيتِ الذي ينتجُ منْ تحوُّلِ الصخرِ الرمليِّ عندَ تعرُّضِهِ لحرارةٍ مرتفعةٍ في التحوُّلِ التَّماسيِّ.

الأهميةُ الاقتصاديةُ للصخور

The Economic Importance of Rocks

تُمثِّلُ الصخورُ وما تحويهِ منْ معادنَ أهميةً كبيرةً للإنسانِ في حياتِهِ اليوميةِ، وكلَّما حدثَ تطوُّرُ تكنولوجيُّ زادَتِ الحاجةُ إلى الصخورِ؛ إذْ يستفادُ منْها في العديدِ منْ مناحي الحياةِ، مثلُ استخدامِ الصخرِ الجيريِّ والغرانيتِ في مجالِ البناءِ، واستخدامِ الصخرِ الرمليِّ في صناعةِ الزجاجِ، واستخدامِ السليكون في الصناعاتِ التكنولوجيةِ الحديثةِ، ولا سيما الحواسيب، وهو عنصرٌ يُستخرَجُ منَ المعادنِ السليكاتيةِ (المُكوِّنُ الرئيسُ للصخورِ الناريةِ)، ومنَ الصخورِ الرمليةِ الرسوبيةِ.

أمّا الصخورُ التي تحوي المعادنَ والفلزّاتِ ففيها كثيرٌ منَ الخاماتِ الطبيعيةِ، مثلُ: خاماتِ الحديدِ، والنحاسِ، والذهبِ، وكذلكَ النفطُ، والغازُ الطبيعيُّ، والصخرُ الزيتيُّ.

يوجدُ في الأردنِّ العديدُ منْ أنواعِ الصخورِ المختلفةِ والخاماتِ المعدنيةِ، مثل: صخرِ الفوسفاتِ الذي يُستخدَمُ في صناعةِ الأسمدةِ الزراعيةِ، وفي صناعةِ حمضِ الفسفوريكِ، ويوجدُ في مناطقَ عِدَّةٍ منَ المملكةِ، منْها: الحسا، والشيديةُ؛ والصخرِ الزيتيِّ الذي يُستخدَمُ في إنتاجِ الطاقةِ، ويوجدُ في العديدِ منَ المناطقِ، مثلِ: اللجون، وعطاراتِ أمِّ غدرانَ، أنظرُ الشكلَ (25)؛ والرملِ الزجاجيِّ الذي يُستخدَمُ في صناعةِ الزجاجِ والصناعاتِ الإلكترونيةِ، ويوجدُ في مناطقَ عِدَّةٍ منَ جنوبِ المملكةِ، مثلِ رأسِ النقبِ؛ وصخورِ البازلتِ التي تُستخدَمُ في صناعةِ الصوفِ الصخريِّ، وفي البناءِ، وتوجدُ في مناطقَ مُتعددةٍ، مثلِ مناعةِ الموبِ عمّانَ؛ والصخرِ الجيريِّ الذي يُستخدَمُ في البناءِ، وفي صناعةِ الأسمنتِ؛ وصخورِ الجبسِ التي تُستخدَمُ في المناعةِ الأسمنتِ؛ وصخورِ الجبسِ التي تُستخدَمُ في مناطقَ عِدَّةٍ مثلِ صناعةِ الأسمنتِ؛ وصخورِ الجبسِ التي تُستخدَمُ في مناطقَ عِدَّةٍ، مثلِ الذيكورُ)، وفي صناعةِ الأسمنتِ، وتوجدُ في مناطقَ عِدَّةٍ، مثلِ الذيكورُ)، وفي صناعةِ الأسمنتِ، وتوجدُ في مناطقَ عِدَّةٍ، مثلِ الأزرقِ شرقيَّ المملكةِ.

يوجدُ في الأردنِّ أيضًا العديدُ منَ المعادنِ التي تحويها الصخورُ، مثلُ: معدنِ الكوارتزِ الذي يُستخدَمُ في الصناعاتِ الإلكترونيةِ؛ ومعدنِ الزركونِ (يوجدُ في الصخورِ الرمليةِ) الذي يُستخدَمُ في صناعةِ قوالب

الربطُ بالتاريخ استخدم الإنسانُ قديمًا الصخورَ بطرائقَ مختلفةٍ. أبحثُ في مصادرِ المعرفةِ المتوافرةِ عنْ أنواعِ هذهِ الصخورِ، وكيفيةِ معالجتِه إيّاها، ومجالاتِ استعمالِه لها.

الشكل (25) الصخرُ الزيتيُّ الذي يتوافرُ بكميّاتٍ اقتصاديةٍ في وسطِ الأردنُّ وشمالِهِ.

الشكل (26): معدنُ الملاكيتِ أحدُ خاماتِ النحاسِ في منطقةِ فينانَ جنوبَ الأردنِّ.

الصَّبِّ ومعاجينِ الأسنانِ؛ والنحاسِ (يوجدُ في معدنِ الملاكيت، ومعدنِ الأزوريتِ) الذي يُستخدَمُ في صناعةِ الأسلاكِ الكهربائيةِ، ويوجدُ في منطقةِ فينانَ، وخربةِ النحاسِ، أنظرُ الشكلَ (26)؛ ومعدنِ الكاؤلينِ الذي يُستخدَمُ في صناعةِ السيراميكِ، ويوجدُ في الصخورِ الكاؤلينِ الذي يُستخدَمُ في صناعةِ السيراميكِ، ويوجدُ في الصخورِ الطينيةِ المُتكشِّفةِ جنوبَ المملكةِ، مثلَ منطقةِ بطنِ الغولِ؛ والذهبِ الذي يُستخدَمُ في الصناعاتِ الإلكترونيةِ، ويوجدُ في وادي أبي خشيبةَ المملكةِ، معَ صخورٍ بركانيةٍ تُسمّى الكوارتزَ بورفيري.

✓ أتحقَّقُ أذكرُ أسماءَ ثلاثةِ معادنَ تتوافرُ في الأردنِّ، مُحدِّدًا استخدامًا واحدًا لكلِّ منْها.

مراجعة الدّرسِ

- أذكرُ العواملَ التي تُسهِمُ في تحوُّلِ الصخورِ.
- 2. أُفسِّرُ: لماذا لا يُعَدُّ صخرُ الرخام صخرًا مُتورِّقًا؟
- 3. أُقارِنُ بينَ التحوُّلِ الإقليميِّ والتحوُّلِ التَّماسيِّ منْ حيثُ العواملُ المُؤثِّرةُ في كلِّ منْهُما.
 - 4. أستنتجُ: إذا تعرَّضَتِ الصخورُ لمحاليلَ مائيةٍ حارَّةٍ جدًّا، فماذا يُمكِنُ أَنْ يحدثَ لها؟
 - 5. أتوقُّعُ: إذا تعرَّضَتْ صخورُ الشيستِ لضغطٍ وحرارةٍ إضافييْنِ، فماذا يحدثُ لها؟

الإثراءُ والتّوسُّحُ

الصوف الصخريُّ Rockwool

تدخلُ الصخورُ في صناعةِ العديدِ منَ المُنتَجاتِ التي يستعملُها الإنسانُ في حياتِهِ اليوميةِ. ومنْ هذهِ الصخورِ الصوفُ الصخريُّ، وهوَ مادةٌ عازلةٌ تمتازُ بمقاومتِها الحرائقَ بسببِ درجةِ انصهارِها العاليةِ، وبقدرتِها على العزلِ الحراريِّ والعزلِ الصوتيِّ؛ لذا تُستخدَمُ في عزلِ جدرانِ المباني، وفي صناعةِ بعضِ الأدواتِ الكهربائيةِ، مثلِ المكيِّفاتِ والثلّاجاتِ، فضلًا عنِ استخدامِها في الزراعةِ.

يُصنَعُ الصوفُ الصخريُّ عنْ طريقِ صهرِ صخرِ البازلتِ في أفرانٍ خاصةٍ تصلُ فيها درجةُ الحرارةِ الله الصوفُ الصوفُ الصهارةُ على نحوٍ دائريٍّ في عجلةِ الغزلِ بسرعةٍ كبيرةٍ. وفي أثناءِ ذلكَ يُسلَّطُ عليها تيارٌ هوائيٌّ شبيهٌ بما في آلةِ غزلِ الحلوى، فتنتجُ خيوطٌ رفيعةٌ متشابكةٌ، ثمَّ تُجمَّعُ بأشكالٍ مختلفةٍ.

تشيرُ الدراساتُ إلى أنَّ الصوفَ الصخريَّ آمنٌ، وغيرُ مُضِرِّ بصحةِ الإنسانِ. وصناعةُ الصوفِ الصخريِّ التي هي من الصناعاتِ الواعدةِ المُجدِيةِ اقتصاديًّا، ويوجدُ في الأردنِّ عددٌ منْ مصانعِ الصوفِ الصخريِّ التي تُنتِحُ أنواعًا مختلفةً منْهُ.

مراجعة الوحدة

السؤالُ الأولُ:

أضعُ دائرةً حولَ رمزِ الإجابةِ الصحيحةِ في ما يأتي:

1. من الصخور النارية الجوفية:

أ - الأنديزيتِ. ب- البازلتِ.

ج- الريوليتِ. د - الغرانيتِ.

2. أقلُّ الصخور وفرةً بالسليكا هي الصخور:

أ ـ الفلسيةُ. بـ المتوسطةُ. جـ المافيةُ. د ـ فوقَ المافيةِ.

3. الصخر الذي يتفاعل بشدّة مع حمض الهيدر وكلوريك المُخفّف هو :

أ - الصخرُ الجيريُّ. ب- الجبسُ.

ج- الملخ الصخريُّ. د - الدولوميتُ.

4. الصخرُ الرسوبيُّ الذي يقلُّ حجمُ حبيباتِهِ عنْ (1/256 mm) هوَ:

أ - الصخرُ الرمليُّ ب- الكونغلوميراتُ.

ج- البريشيا. د - الغضارُ.

من الصخور الرسوبية الكيميائية الحيوية:

أ - الصخرُ الرمليُّ. ب- الصخرُ الجيريُّ. ج- صخرُ الكوكينا. د - صخرُ الغضارِ.

6. منَ الصخور المُتحوِّلةِ غير المُتورِّقةِ صخرُ:

أ - النايسِ. ب- الشيستِ.

ج- الأردوازِ. د ـ الرخامِ.

السوال الثاني:

أملأُ الفراغَ في ما يأتي بما هوَ مناسبٌ منَ المصطلحاتِ: أ

معظمُهُ من السليكا، ومنْ غازاتٍ أهمُّها بخار الماءِ.

- ج- عملية تنتج من ترسب عملية المحاليل المائية الموادّ المعدنية التي تحملُها المحاليل المائية في الرسوبياتِ.

الرسوبيِّ. هـ- صخورٌ تنشأُ نتيجةً تبريدِ الماغما ببطءٍ في باطنِ الأرض.

السؤالُ الثالثُ:

ما الفرقُ بينَ القواطعِ الناريةِ والمُندَسّاتِ الناريةِ؟

السؤالُ الرابعُ:

أُفسِّرُ كلَّ ممّا يأتي تفسيرًا علميًّا دقيقًا:

أ - تمتازُ الصخورُ الناريةُ السطحيةُ ببلّوراتِها صغيرةِ الحجمِ التي لا تُرى بالعينِ المُجرَّدةِ.

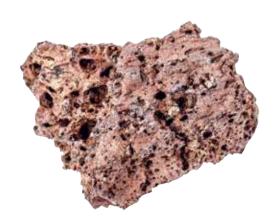
ب- لا يُعَدُّ نسيجُ صخرِ الأوبسيديانِ نسيجًا ناعمًا.

ج- تمتازُ الصخورُ الفلسيةُ بلونِها الفاتح، في حينِ
 تمتازُ الصخورُ المافيةُ بلونِها الغامقِ.

هـ لا يوجدُ نسيجٌ مُتورِّقٌ في صخورِ الكوارتزيتِ.

السوال الخامس:

أُقارِنُ بينَ كُلِّ زوجٍ ممّا يأتي:


أ - الماغما واللابةُ

ب- التحوُّلُ الإقليميُّ والتحوُّلُ التَّماسيُّ منْ حيثُ عاملُ التحوُّلِ المُؤثِّرِ، ومساحةُ الصخورِ المُتحوِّلةِ.

مراجعة الوحدة

السوال السادس:

أُوضِّحُ كيفيةَ تكوُّنِ النسيج الفقاعيِّ.

السوال السابع:

أُصنِّفُ الصخورَ الناريةَ الآتيةَ تبعًا لمحتواها منَ السليكا، منَ الأكثرِ إلى الأقلِّ:

الغابرو، البيريدوتيت، الغرانيت، الديوريت.

السوال الثامن:

أُقوِّمُ العبارِةَ الآتيةَ:

"يحتوي الصخرُ الرمليُّ على معادنَ تختلفُ عنِ المعادنِ المُكوِّنةِ للصخرِ الأصليِّ بسببِ حدوثِ تجويةٍ كيميائيةٍ للصخر الأصليِّ".

السوال التاسع:

أستنتج: ما الذي يُمكِنُ استخلاصُهُ عنِ البيئاتِ الرسوبيةِ عندَ دراسةِ تتابعٍ طبقيٍّ مُكوَّنٍ منْ صخرِ الكونغلوميراتِ؟

السؤالُ العاشرُ:

أُوضِّحُ: كيفَ تتكوَّنُ الصخورُ الرسوبيةُ الكيميائيةُ؟

السؤال الحادي عشر:

عثرَ أحدُ الجيولوجيينَ على آثارِ لتشقُّقاتِ طينيةِ على سطح إحدى الطبقاتِ، علامَ يُمكِنُ أَنْ يستدلَّ منْ وجودِها؟

السؤال الثاني عشر:

أُرتِّبُ الصخورَ المُتحوِّلةَ الآتيةَ منَ الأكثرِ درجةَ تحوُّلٍ إلى الأقلِّ منْها:

الشيست، الفيليت، النايس، الأردواز.

السؤالُ الثالث عشر:

أستنتجُ: لماذا يُمكِنُ رؤيةُ البلّوراتِ المُكوِّنةِ لصخرِ النايسِ بالعينِ المُجرَّدةِ، ولا يُمكِنُ تمييزُ ها في صخرِ الأردوازِ؟

السؤال الرابع عشر:

أذكرُ أسماءَ ثلاثةِ صخورٍ توجدُ في الأردنِّ، مُحدِّدًا استخدامَ كلِّ منْها.

Stars

الْوَحْدَةُ

2

قال تعالى:

﴿ فَكَلَّ أُقْسِمُ بِمَوَاقِعِ ٱلنُّجُومِ ۞ وَإِنَّهُ لِقَسَدُ لَّوَ تَعَامُونَ عَظِيمٌ ۞ ﴿.

(الواقعة، الآيتين 75 و 76)

أَتَأُمَّلُ الصورةَ

تُمثِّلُ الصورةُ سحابةَ ماجلَّانَ الصغرى Small Cloud Magellanic التي تحوي عددًا هائلًا منَ النجوم المختلفةِ. فيمَ تختلفُ النجومُ عنْ بعضِها؟

الفكرةُ العامةُ:

النجومُ أجرامٌ سماويةٌ يختلفُ بعضُها عنْ بعضٍ في الصفاتِ، ولكلِّ منْها دورةُ حياةٍ.

الدرسُ الأولُ: ماهيةُ النجوم

الفكرةُ الرئيسةُ: النجومُ أجرامٌ سماويةٌ مضيئةٌ يختلفُ بعضُها عنْ بعضٍ في الصفاتِ، مثلِ: اللونِ، والكتلةِ، والحجم.

الدرسُ الثاني: الأنظمةُ النجميةُ والكوكباتُ

الفكرةُ الرَّئيسةُ: توجدُ النجومُ ضمنَ أنظمةٍ مختلفةٍ في السماء، وترتبطُ في ما بينَها ارتباطًا جذبيًّا، وقدْ توجدُ في مجموعاتٍ لا ترتبطُ فيها النجومُ ارتباطًا جذبيًّا وقدْ تكونُ منفردةً مثلَ الشمس.

الدرسُ الثالثُ: دورةُ حياةِ النجوم

الفكرةُ الرَّئيسةُ: تمرُّ النجومُ بمراحلَ عمريةٍ مختلفةٍ طويلةٍ جدًّا قدْ تبلغُ ملياراتِ السنينَ اعتمادًا على كتلتِها.

وركم المتعادية

النجومُ منْ حولنا

الموادُّ والأدواتُ: صورةٌ تُمثِّلُ جزءًا منَ السماءِ يحوي مجموعةً منَ النجوم، (3) بطّارياتٍ، أسلاكُ، (6) مصابيحَ مختلفةِ الألوانِ والحجوم، مفتاحٌ، كرتونٍ مُقوَّى، ألوان، مِقصٌّ، مِسطرة، قلمٌ.

إرشاداتُ السلامةِ:

- الحذرُ في أثناءِ استخدام المِقصِّ.
- غسلُ اليدين جيدًا بالماءِ والصابونِ بعدَ استخدام الألوانِ.

خطواتُ العمل:

- 1 مُستخدِمًا القلمَ والمِسطرةَ، أرسمُ على قطعةِ الكرتونِ مستطيلًا أبعادُهُ (40 cm × 30 cm). (يُمكِنُ رسم أيِّ شكل هندسيٍّ).
 - 2 أقصُّ المستطيل (الشكلُ الهندسيُّ) الذي رسمْتُهُ باستخدام المِقصِّ.
- أرسمُ على المستطيل النجومَ الظاهرةَ في الصورةِ، التي تُمثّلُ جزءًا منَ السماءِ، مراعيًا الأبعادَ المناسبةَ لهُ، ومُنتبهًا للنجوم الْمُرقَّمةِ.
 - 4 أثقبُ النجومَ المُرقَّمةَ التي رسمْتُها.
- 5 أُلوِّنُ المستطيلَ باللونِ الأُسودِ، وأستخدمُ الألوانَ المختلفةَ في عملِ خلفيةٍ تُمثِّلُ الفضاءَ. 6 على الجهةِ الخلفيةِ منَ المستطيلِ، أُصمِّمُ دارةً كهربائيةً، ثمَّ أُثبِّتُ المصابيحَ في الثقوبِ التي صنعْتُها، ثمَّ أعملُ على توصيلِها جميعًا على التوالي.
 - 🚺 أَلاحِظُ النجومَ في الدارةِ الكهربائيةِ عندَ إغلاقِها.

التحليلُ والاستنتاجُ:

- أُصِفُ كيفَ تبدو النجومُ (مُتفرِّقةٌ، أمْ مُتجمِّعةٌ).
- 2. أتنبَّأُ: لماذا تختلفُ ألوانُ النجوم وحجومُها في السماء؟
- 3. ما الشكلُ الذي تَظهرُ عليْهِ النجو مُ التي تقعُ أقصى اليسارِ منْ نموذجي؟
 - 4. أكتبُ فقرةً تتضمَّنُ المعلوماتِ التي توصَّلْتُ إليْها عنِ النجوم.

What Are The Stars?

الفكرةُ الرّئيسةُ:

النجومُ أجرامٌ سماويةٌ مضيئةٌ يختلفُ بعضُها عنْ بعضٍ في الصفاتِ، مثلِ: اللونِ، والكتلةِ، والحجم.

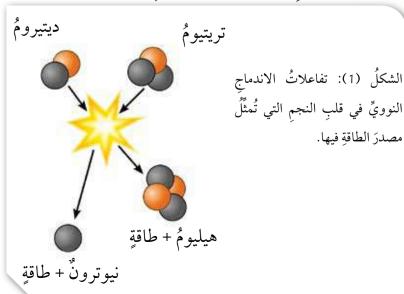
نتاجاتُ التعلُم:

- -أُوضِّحُ المقصودَ بكلِّ منَ: النجمِ، والاندماجاتِ النوويةِ، والسطوع.
- أُبيِّنُ مصدرَ الطاقةِ في قلبِ النجم.
- أربطُ بينَ درجةِ حرارةِ النجم ولونِهِ.
- أذكرُ أمثلةً على نجومٍ مختلفةِ الألوانِ والحجوم.
- أستنتجُ العلاقة بينَ حجمِ النجمِ ودرجةِ حرارتِهِ منْ جهةٍ، وسطوعِهِ منْ جهةٍ أُخرى.

المفاهية والمصطلحات:

النجمُ النوويُّ Nuclear Fusion الاندماجُ النوويُّ Luminosity

▼ أتحقَّقُ أُوضِّحُ المقصودَ بالنجمِ.


ما النجمُ؟ ?What Is The Star

يُعرَّفُ النجمُ Star بِأَنَّهُ جِرمٌ سماويٌّ كرويٌّ يتكوّنُ منْ غازٍ ساخنٍ مُتأيِّنٍ، يغلبُ على مُكوِّناتِهِ نَوى عناصرِ الهيدروجينِ والهيليومِ، ونسبِ قليلةٍ منْ عناصرَ أُخرى، مثل: الكربونِ، والنتروجينِ، والأكسجين، والحديدِ، وهو يُصدِرُ طاقةً حراريةً وضوئيةً.

لمْ يتمكَّنِ العلماءُ منَ الوصولِ إلى النجومِ، ولكنَّهُمْ توصَّلوا إلى معرفة صفاتِها المختلفةِ، مثلِ: لونِها، وكتلتِها، وحجمِها، ودرجاتِ حرارتِها، وذلكَ بتحليلِ أطيافِ الأشعةِ المُنبعِثةِ منْها، وسنتحدَّثُ عنْ بعض هذهِ الخصائص في درسِنا هذا.

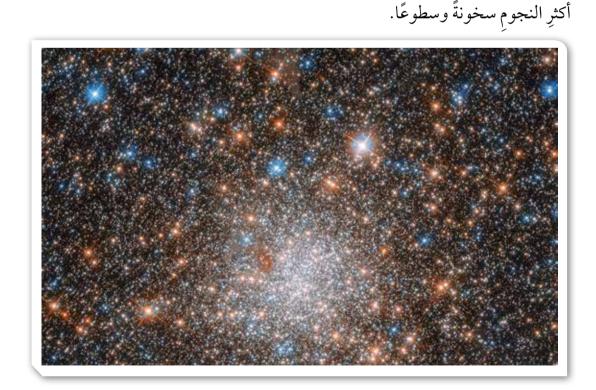
ولكنْ، ما مصدرُ الطاقةِ في النجوم؟

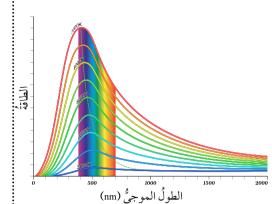
تنشأُ هذه الطاقةُ عنِ الاندماجاتِ النوويةِ Nuclear Fusions التي تحدثُ في قلبِ النجم؛ إذْ تَتَّحِدُ النَّوى الخفيفةُ لنظائرِ الهيدروجينِ (الديتيريومُ (١٤٠)، والتريتيومُ (١٤٠)) لإنتاجِ نواةٍ أثقلَ، هي نواةُ الهيليومِ. ونظرًا إلى فرقِ الكتلةِ بينَ الموادِّ المتفاعلةِ والمادةِ الناتجةِ منَ التفاعلِ؛ تنتجُ كميّاتُ كبيرةُ منَ الطاقةِ تصلُ الأرضَ في صورةِ حرارةٍ وضوءٍ. يحدثُ هذا الاندماجُ تحتَ ضغوطٍ هائلةٍ، ودرجاتِ حرارةٍ مرتفعةٍ جدًّا في قلبِ النجمِ، أنظرُ الشكلَ (1) الذي يُمثَّلُ عناعلاتِ الاندماجِ النوويِّ في قلبِ النجمِ.

سطوع النجوم Luminosity

عندَ النظرِ إلى السماءِ ليلًا نجدُ أنَّ النجومَ تتفاوتُ في صفاتِها، مثل: الحجم، واللونِ، والسطوع؛ فمنْها ما يُمكِنُ تمييزُهُ، ومنْها ما هوَ خافتٌ لا يكاذُ يُرى بالعينِ المُجرَّدةِ. فما المقصودُ بالسطوعِ؟ ما العواملُ التي تجعلُ أحدَ النجوم ساطعًا أكثرَ منْ غيرهِ؟

يُعرَّفُ سطوعُ النجمِ Luminosity بأنَّهُ كميَّةُ الطاقةِ التي يَشِعُّها النجمُ فعليًّا في الثانيةِ الواحدةِ. يعتمدُ سطوعُ أيِّ نجم على عامليْنِ، هما: درجةُ حرارةِ سطح النجم، وحجمُهُ، ويتناسبُ السطوعُ معَ كليْهِما طرديًّا.


درجة حرارة سطوح النجوم وألوائها


Surface Temperature of Stars and their Colors

قدْ تبدو جميعُ النجومِ أولَ نظرةٍ نقاطًا لامعةً مضيئةً في السماء. ولكنْ، إنْ نظرْنا إليْها باستخدامِ المِقرابِ سنجدُها مختلفةً في ألوانِها كما في الشكلِ (2)؛ إذْ إنَّها تلمعُ مثل الجواهرِ الملونةِ على خلفيةٍ مخمليةٍ سوداءَ. تختلفُ ألوانُ النجومِ بسببِ اختلافِ درجاتِ حرارتِها السطحية؛ فالنجومُ الحمراءُ والبرتقاليةُ تُمثِّلُ أقلَّ النجومِ درجةً منْ حيثُ الحرارةُ والسطوعُ. أمّا النجومُ ذاتُ اللونِ الأصفرِ فتكونُ متوسطةَ درجةِ الحرارةِ والسطوع، في حينِ يشيرُ اللونُ الأبيضُ المُزْرَقُ إلى

الشكلُ (2): نجومٌ مختلفةُ الألوانِ التُقِطَتْ صورتُها باستخدامِ مِقرابِ هابلَ الفضائيِّ.

أُوضِّحُ ما الألوانُ التي تظهرُ بها النجومُ؟

الشكلُ (3): العلاقةُ بينَ طاقةِ الإشعاعِ وطولِ موجةِ الذروةِ لإشعاعِ النجم بوحدةِ النانومترِ (mn) لتسعةِ نجوم مختلفةٍ . يتضحُ منَ الشكلِ أنَّ طولَ موجةِ الذروةِ يقلُّ عندَ ارتفاعِ درجةِ حرارةِ سطح النجم مقيسةً بوحدةِ كلفن (X).

الربطُ بالفيزياءِ

يَشِعُّ النجمُ عندَ درجةِ حرارةٍ مُعيَّنةٍ حزمةً منَ الموجاتِ المتقاربةِ في طولِها الموجيِّ، تتمركزُ حولَ موجةٍ محوريةٍ تحملُ أكبرَ كميَّةٍ منَ الطاقةِ، وتُسمِّى موجةَ الذروةِ λ ذ، حيثُ تتناسبُ درجةُ الحرارةِ عكسيًّا معَ الطولِ الموجيِّ؛ فكلَّما زادَتْ درجةُ حرارةِ سطحِ النجمِ قَصُرَ الطولُ الموجيُّ لأشعَّتِهِ (يميلُ لونُهُ إلى الأزرقِ)، وكلَّما انخفضَتْ درجةُ حرارةِ سطحِ النجمِ زادَ الطولُ الموجيُّ لأشعَّتِهِ (يميلُ لونُهُ إلى الأحمرِ)، أنظرُ الشكلَ (3).

◄ أتحقَّقُ أذكرُ العواملَ التي يعتمدُ عليْها سطوعُ النجومِ.

لتعرُّفِ المعلوماتِ التي يُمكِنُ استنتاجُها منْ ألوانِ النجومِ، سننفِّذُ التجربةَ الآتيةَ.

نجرة 1

الكشفُ عنْ ألوانِ النجوم

الموادُّ والأدوات:

شريطٌ كهربائيٌ، سلكانِ موصلانِ، بطّاريةٌ جافًةٌ ضعيفةٌ (قديمةٌ)، مصباحٌ كهربائيٌ، بطّاريتانِ جافّتانِ جديدتانِ.

إرشادات السلامة:

- الحذرُ عندَ لمسِ المصباحِ الكهربائيِّ باليدِ في أثناءِ تسخينه
- عدمُ لمسِ المصباحِ الكهربائيِّ باليدِ مباشرةً عندَ تسخينِهِ.

خطوات العمل:

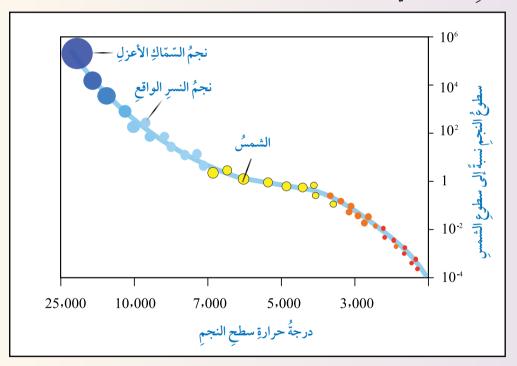
- أربطُ أحدَ طرفَي السلكيْنِ بالقطبِ الموجبِ البطّاريةِ الضعيفةِ، ثمَّ أربطُ طرفَ السلكِ الثاني بقطبِها السالب، وأتركُ نهايةَ السلكيْنِ حُرَّةً.
- 2. ألمِسُ الطرفَ الآخرَ منْ كلِّ سلكٍ بمصباحٍ منْ أسفلِهِ،

ومنَ الجزءِ المعدنيِّ، بحيثُ يُضيءُ المصباحُ.

- 3. أكتبُ لونَ سلكِ المصباحِ بعدَ مرورِ (8 ثوانٍ)، ثمَّ المسِ بحذرِ المصباحَ بيديَّ لوصفِ درجةِ حرارتِهِ.
- 4. أُكرِّرُ الخطواتِ السابقةَ، ولكنْ باستخدامِ بطَّاريةٍ جديدةٍ.
- أُثبِّتُ البطّاريتيْنِ الجديدتيْنِ باستخدامِ شريطٍ
 كهربائيً، ثمّ أُكرِّرُ الخطواتِ السابقةَ.

التحليل والاستنتاج:

- أقارنُ لونَ سلكِ المصباحِ في الحالاتِ الثلاثِ السابقةِ،
 ثمَّ أُدوِّنُ ملاحظاتي.
- أصف كيف يتغيّر لون سلك المصباح، ودرجة حرارته في الحالات الثلاث السابقة، ثمّ أُدوِّنُ ملاحظاتي.
- 3. أُناقِشُ سببَ تغيُّرِ درجةِ حرارةِ المصباحِ في الحالاتِ الثلاثِ السابقةِ.
- 4. أتوقَّعُ لونَ النجومِ عندَ درجاتِ حرارةِ سطحٍ مرتفعةٍ نسبيًّا، ولونَها عندَ درجاتِ حرارةِ سطح منخفضةٍ نسبيًّا.


حجومُ النجم Star Sizes

عندَ النظرِ إلى النجومِ في السماء، فإنّها تبدو جميعًا كنقاطِ ضوءٍ منَ الحجمِ نفسِهِ. فهلْ تبدو لنا النجومُ في حجمِها الحقيقيّ؟ يُمكِنُ تعرُّفُ حجوم النجوم وعلاقتِها بالسطوع بتنفيذِ النشاطِ الآتي.

تمييزُ حجومِ النجومِ وعلاقتُها بالسطوعِ

أدرسُ الشكلَ الآتيَ الذي يُمثِّلُ مُخطَّطًا يُبيِّنُ العلاقةَ بينَ سطوعِ النجومِ وحجومِها ودرجاتِ حرارتِها السطحيةِ، ثمَّ أُجيبُ عن الأسئلةِ التي تليهِ:

التحليلُ والاستنتاجُ:

- 1 أُصنِّفُ النجومَ إلى فئاتٍ حجميةٍ.
- 2 أَصِفُ العلاقةَ بينَ حجمِ النجمِ وسطوعِهِ.
- 3 أتوقُّعُ: ما مقدارُ سطوعِ نَجمٍ ذي درجةِ حرارةٍ منخفضةٍ وحجم كبيرٍ؟ أُحدِّدُ موقعَهُ على المُخطَّطِ.

أَفْكُلُ النجمُ سيريوس Sirius النجمُ سيريوس النجمُ سيريوس الكثرُ سطوعًا بمقدارِ ضعفيْنِ من النجمِ ريجل البعدُ عنّا ولكنَّ النجمَ ريجل أبعدُ عنّا بمسافةٍ تزيدُ (100 مَرَّةٍ) على النجمِ سيريوس. النجمِ سيريوس. أَتنبَّأُ: أيُّ النجميْنِ تنبعثُ منْهُ كميَّةَ طاقةٍ أكبر؟ لماذا؟

يَتبيَّنُ ممّا سبقَ أنَّ النجومَ تختلفُ في حجومِها؛ فبعضُها كبيرٌ جدًّا مثلُ نجمُ السّمّاكِ الأعزلِ (Spica)، وبعضُهُمْ كبيرٌ مثلُ نجمِ النسرِ الواقع (Vega)، وبعضُها متوسطُ الحجم مثلُ الشمسِ، وبعضٌ آخرُ أصغرُ كثيرًا منَ الشمسِ. ومنَ المُلاحَظِ أنَّهُ كلَّما زادَ حجمُ النجمِ ودرجةُ حرارتِهِ زادَ مقدارُ سطوعِهِ.

◄ أتحقَّقُ هلْ توجدُ علاقةٌ بينَ حجمِ النجمِ وبُعْدِهِ عنِ الأرضِ؟ أستقصي العلاقةَ (إنْ وُجِدَتْ).

مراجعة الدّرسِ

- 1. أُفسِّرُ كيفَ توصَّلَ العلماءُ إلى معرفةِ خصائصِ النجومِ بالرغمِ منْ عدمِ وصولِهِمْ إليْها.
- 2. أبحثُ في الأسبابِ التي تجعلُ سطوعَ نجمٍ ما عاليًا بالرغمِ منِ انخفاضِ درجةِ حرارةِ سطحِهِ.
 - 3. أُبيِّنُ مصدرَ الطاقةِ في النجوم.
- 4. أستنتجُ إذا صعدْتُ إلى سطَحِ المنزلِ، ثمَّ نظرْتُ إلى السماءِ مستعينًا بالمِقرابِ، فلاحظتُ وجودَ نجمٍ أزرقَ ساطعٍ في السماءِ، فما المعلوماتُ التي يُمكِنُ أَنْ أستخلصَها عنْ خصائصِ هذا النجم؟
 - 5. أُنشِئُ مُخطَّطًا مفاهيميًّا أُنظِّمُ فيهِ العواملَ التي تَحْكُمُ سطوعَ النجوم.

الدرس (2

الأنظمة النجمية والكوكبات

Stellar Systems and Constellation

كيف تبدو النجوم في السماع؟

How Do The Stars Look Like In The Sky?

نشاهِدُ النجومَ ليلًا في السماءِ كنقاطٍ صغيرةٍ كثيرةٍ مضيئةٍ بسببِ بُعْدِها الهائلِ عنِ الأرضِ، ونُلاحِظُ اختلافًا في لمعانِها وسطوعِها. وإذا أنعمنا النظرَ في السماء، فإنّنا سنُشاهِدُ نجومًا مُتفرِّقةً، وأُخرى مُتجمِّعةً؛ فالنجومُ في السماءِ توجدُ بأشكالٍ متنوعةٍ، منْها المنفردُ مثلُ الشمسِ، ومنْها ما يكونُ غالبًا في صورةِ مجموعاتٍ يرتبطُ بعضُها ببعضٍ بقوًى جذبيةٍ يُطلَقُ عليْها اسمُ مجموعاتٍ يرتبطُ بعضُها ببعضٍ الثنائيةِ، والنجومِ المُتعددةِ. غيرَ النجومِ قدْ تبدو لنا وكأنّها مُنجذِبةٌ إلى بعضِها، وهيَ في الحقيقةِ غيرُ ذلك كما هو حالُ المجموعاتِ النجميةِ (الكوكباتُ)، انظرُ الشكلَ (4).

-الشكل (4): الأشكالُ المختلفةُ للنجومِ في السماءِ. أَصِفُ الشكلَ الذي تظهرُ بهِ العناقيدُ النجميةُ.

أتحقَّقُ كيفَ توجدُ النجومُ في السماءِ؟

الفكرةُ الرّئيسةُ:

توجدُ النجومُ ضمنَ أنظمةٍ مختلفةٍ في السماء، وترتبطُ في ما بينَها ارتباطًا جذبيًّا، وقدْ توجدُ في مجموعاتٍ لا ترتبطُ فيها النجومُ ارتباطًا جذبيًّا، وقدْ تكونُ منفردةً مثلَ الشمس.

نتاجاتُ التعلُم:

- أُوضِّحُ المُقصودَ بكلِّ منَ: الأنظمةِ النجميةِ، والنجومِ الثنائيةِ، والعناقيدِ النجميةِ، والمحموعاتِ النجميةِ (الكوكباتُ)، ودائرةِ البروج.

- أُميِّزُ بينَ أنواعِ الأنظمةِ النجميةِ.
- أرسمُ أشكالًا هندسيةً تُمثِّلُ مجموعةً
منَ الكوكباتِ النجميةِ، وأذكرُ

المفاهية والمصطلحات:

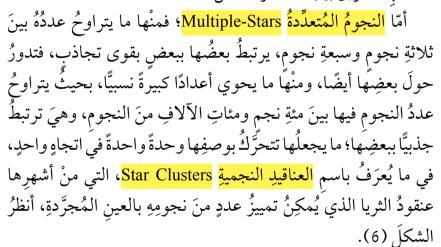
المجموعاتُ النجميةُ (الكوكباتُ)

Constellation

Stellar Systems ألنجمية الأنظمة النجمية

Binary Stars النجومُ الثنائيةُ

العناقيدُ النجميةُ Star Clusters


كوكباتُ البروج

دائرةُ البروج Ecliptic

الأنظمةُ النجميةُ Stellar Systems

ترتبطُ النجومُ في ما بينَها بقوى جذبِ تجعلُها تدورُ حولَ بعضِها، وتُسمّى هذهِ النجومُ الأنظمةَ النجميةَ Stellar Systems، وهيَ تنقسمُ إلى أقسام عِدَّةٍ، منْها: النجومُ الثنائيةُ Binary Stars، والنجومُ المُتعدِّدةُ .Multiple-Star Systems

تتكوَّنُ النجومُ الثنائيةُ Binary Stars منْ نجميْنِ اثنيْنِ فقطْ يرتبطانِ بقوًى تجاذبيةٍ متبادلةٍ في ما بينَهُما، تجعلُ أحدَهُما يدورُ حولَ الآخرِ خلالَ حركتِهِما في الفضاءِ، ومنْ أمثلتِها نجما المئزرِ والسهى الموجودانِ عندَ انحناءِ مقبضِ كوكبةِ الدبِّ الأكبرِ. وقدِ استُخدِمَ هذانِ النجمانِ في ما مضى لفحصِ النظرِ؛ فهُما يُشاهَدانِ بالعينِ المُجرَّدةِ بوصفِهِما مجموعةً ثنائيةً، إذْ إنَّ كلًّا منْهُما قريبٌ جدًّا منَ الآخرِ، ومنَ الصعب التفريقُ بينَهُما، أنظرُ الشكلَ (5).

سُمِّيَتِ العناقيدُ النجميةُ بهذا الاسم؛ لأنَّ لها شكلًا يُشْبِهُ عنقو دَ العنبِ، وهي تنقسمُ إلى مجموعتيْنِ، تبعًا للمسافةِ التي تفصلُ بينَ نجومِها، هما: العناقيدُ النجميةُ المفتوحةُ التي تفصلُ بينَ نجومِها مسافاتٌ كبيرةٌ، فتبدو نجومُها مُبعثَرةً غيرَ متراصَّةٍ؛ والعناقيدُ النجميةُ المغلقةُ التي تكونُ فيها النجومُ متراصَّةً، فتبدو كأنَّها كتلةٌ مستديرةٌ متراصَّةٌ.

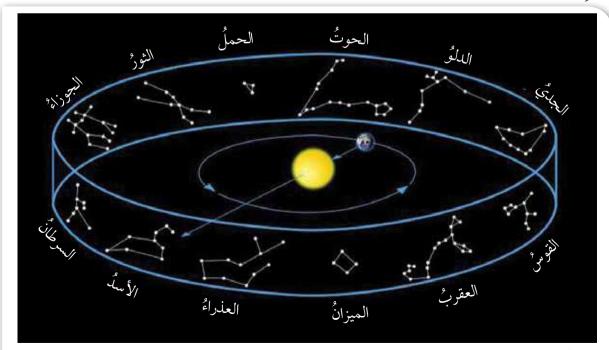
الشكلُ (5): نجما المئزر والسهي.

الشكلُ (6): عنقودُ الثريا.

◄ أتحقَّقُ أُوضِّحُ المقصودَ بالنجومِ المُتعدِّدةِ؟

أبحثُ: للنجومِ الثنائيةِ أنواعٌ عِدَّةٌ، مثلُ: النجومِ الثنائيةِ المرئيةِ، والنجومِ الثنائيةِ الطيفيةِ، والنجومِ الثنائيةِ الطيفيةِ، والنجومِ الثنائيةِ الكسوفيةِ. مستعينًا بمصادرِ المعرفةِ المتوافرةِ، أبحثُ عنْ هذهِ الأنواعِ الثلاثةِ، ثمَّ أُعِدُّ عرضًا تقديميًّا عنْها، ثمَّ أعرضُهُ أمامَ زملائي في الصفِّ.

الكوكباتُ وكوكباتُ البروج Constellation and Zodiac


تعرَّفْتُ سابقًا أنَّ الكوكباتِ Constellation هيَ مجموعاتُ نجميةٌ لا ترتبطُ نجومُها بقوًى جذبيةٍ في ما بينَها؛ لذا تُسمّى المجموعاتِ النجميةَ الظاهرية؛ إذْ تظهرُ بأشكالِها المختلفةِ نتيجةَ انعكاسِ الأشعةِ الواصلةِ منْها إلى الأرضِ. وقدْ أطلقَ عليْها القدماءُ منَ الإغريقِ والمصريينَ أسماءً مُحدَّدةً كما تخيّلوها نسبةً إلى أسماءِ شخصياتٍ أسطوريةٍ، أوْ حيواناتٍ، أوْ أشكالِ هندسيةٍ، أنظرُ الشكلَ (7).

قسَّمَ الاتحادُ الدوليُّ الفلكيُّ السماءَ إلى 88 كوكبةً نجميةً، منْها 48 كوكبةً قديمةً، إضافةً إلى 40 كوكبةً نجميةً جديدةً، وذلكَ لتوحيدِ أشكالِ الكوكباتِ النجميةِ وعددِها. بناءً على ذلكَ، أصبحَ كلُّ جِرمٍ في السماءِ (النجومُ، المجرّاتُ، السديمُ الكونيُّ) تابعًا لكوكبةٍ ما. أمّا أشهرُ الكوكباتِ النجميةِ فتلكَ التي ارتبطَ اسمُها بدائرةِ البروجِ Ecliptic وهي دائرةٌ تصنعُها الشمسُ في أثناءِ حركتِها الظاهريةِ حولَ الأرضِ؛ إذْ تقطعُ الشمسُ عددًا منَ الكوكباتِ في أثناءِ مسارِها الظاهريِّ حولَ الأرضِ؛ الأرضِ؛ لذا أُطلِقَ على هذهِ الكوكباتِ اسمُ كوكباتِ البروجِ Zodiac التي تُعرَفُ بالأبراجِ الفلكيةِ، ويبلغُ عددُها 13 كوكبةً تُشاهَدُ على مدارِ العام، أنظرُ الشكلَ (8).

الشكلُ (7): كوكبةُ الدبِّ الأكبر.

الشكلُ (8): كوكباتُ البروج.

أُوضِّحُ ما البرجُ الذي تقطعُهُ الشمسُ في أثناءِ مسارِها الظاهريِّ حولَ الأرضِ، ويُمكِنُ للراصدِ أنْ يُشاهِدَهُ منَ الأرضِ؟

كوكبات البروج

يُمثِّلُ الشكلُ الآتي مجموعةً منْ كوكباتِ البروجِ التي تعرَّفَها القدماءُ، وأطلقوا عليْها أسماءً مختلفةً كما تخيَّلوها:

خطواتُ العمل:

1- أُصِلُ بخطوطٍ بينَ النجومِ في المجموعاتِ النجميةِ، مُتتبِّعًا تسلسلَ الأرقام فيها.

2- أقترحُ اسمًا لكوكبتَي البروج السابقةِ كما تظهرُ لديّ.

التحليلُ والاستنتاجُ:

- 1- أتواصلُ معَ زملائي لتعرُّفِ أسماءِ كوكباتِ البروج التي اقترحوها، ثُمَّ أُدَوِّنُ ملاحظاتي.
- 2- أتحقَّقُ مستعينًا بمصادرِ المعرفةِ المتوافرةِ- منْ صحَّةِ اسمَيْ كوكبتَيِ البروجِ المُقترَحتيْنِ؛ في أيِّ أوقاتِ السنةِ تظهرُ في السماءِ؟
- 3 أرصدُ السماءَ ليلًا، ثمَّ أرسمُ ما يُمكِنُني مشاهدتُهُ منْ مجموعاتٍ نجميةٍ، ثمَّ أعرضُ الرسومَ أمامَ زملائي.
- 4- أُقارِنُ ما رصدْتُهُ منْ مجموعاتٍ نجميةٍ في السماءِ بالمجموعاتِ التي رسمْتُها في الخطوةِ (١) سابقًا؛ ما أوجهُ التشابهِ والاختلافِ بينَهُما؟

النجومُ في حياتِنا Stars in our Life

خلقَ اللهُ تعالى النجوم، وأبدعَ في صُنْعِها، وقدْ حدَّدَ اللهُ عَزَّ وجَلَّ مواقعَ النجوم، فظهرَتْ في صورةِ مجموعاتٍ يهتدي بها الإنسانُ في ظلمةِ الليلِ النجوم، فظهرَتْ في صورةِ مجموعاتٍ يهتدي بها الإنسانُ في ظلمةِ الليلِ الحالكةِ. قالَ تعالى: ﴿ وَهُوَ ٱلَّذِي جَعَلَ لَكُمُ النَّبُحُومَ لِتَمْتَدُواْ بِهَا فِي ظُلُمَتِ ٱلْبَرِّ وَٱلْبَحْرِ اللهِ اللهُ اللهُ اللهُ اللهُ اللهُ اللهُ اللهُ اللهُ اللهُ اللهِ اللهُ اللهِ اللهِ اللهِ اللهِ اللهُ اللهِ اللهِ اللهِ اللهِ اللهِ اللهِ اللهِ اللهِ اللهُ اللهِ اللهُ اللهِ اللهُ اللهِ اللهِ

فعنْ طريقِ معرفةِ كوكبةِ الدبِّ الأكبرِ يُمكِنُ تحديدُ النجمِ القطبيِّ الذي يدلُّ على جهةِ الشمالِ، وقدِ استخدمَ القدماءُ الكوكباتِ النجميةَ في معرفةِ الفصولِ الأربعةِ في تلكَ المناطقِ التي لا تتعاقبُ عليْها الفصولُ؛ إذْ إنَّ موقعَ الكوكباتِ النجميةِ يتغيَّرُ في أثناءِ الحركةِ الظاهريةِ للشمسِ حولَ الأرضِ، فتظهرُ كوكباتُ نجميةٌ، وتختفي أُخرى. وبمعرفةِ الفصولِ الأربعةِ تمكَّنَ القدماءُ منْ تحديدِ أوقاتِ الزراعةِ.

فاللهُ تعالى لَمْ يخلقِ النجومَ لمعرفةِ أقدارِ البشرِ عنْ طريقِها؛ فهوَ وحدَهُ عالِمُ الغيبِ. قالَ سبحانَهُ: ﴿ قُل لَا يَعَلَمُ مَن فِي ٱلسَّمَواتِ وَٱلْأَرْضِ ٱلْغَيْبِ إِلَّا ٱللَّهُ وَمَا يَشَعُرُونَ أَيَّالَ لَكُ عَلَيْ اللهِ اللهِ وَمَا يَشَعُرُونَ أَيَّالَ كَيْ النسل، الآيةُ ١٥).

فالإيمانُ بالأبراجِ، وتوقَّعُ ما سيحدثُ مستقبلًا هوَ منَ المعتقداتِ غيرِ الصحيحةِ؛ لذا يجبُ التفريقُ بينَ التنجيمِ الذي يعتمدُ على التخمينِ وعلمِ الفَلكِ الذي يقومُ على الحقائقِ العلميةِ.

الربطُ بالأدب:

استخدم العربُ قديمًا النجوم في حياتِهِمُ اليومية، النجوم في حياتِهِمُ اليومية، فكانَتْ دليلَهُمْ في أثناء ترحالِهِمْ في الصحراء، وعن طريقِها عرفوا الوقت، والفصول. أبحثُ في مصادرِ الأدبِ والشعرِ عمّا كتبَهُ العربُ قديمًا عنِ النجوم، وفائدتِها لهُمْ في الصحراء.

اً تحقَّقُ

ما الفرقُ بينَ الكوكباتِ والعناقيدِ النجميةِ؟

مراجعة الدّرسِ

- 1. أُقارِنُ بينَ العناقيدِ النجميةِ والنجوم الثنائيةِ.
 - 2. أذكرُ أسماءَ بعضِ الكوكباتِ النجميةِ.
- 3. أشرحُ المقصودَ بالعبارةِ الآتيةِ بناءً على ما تعلَّمْتُهُ في هذا الدرسِ: "تبدو الكوكباتُ النجميةُ وكأنَّها تتحرَّكُ في السماءِ".
- 4. أُناقِشُ العبارةَ الآتيةَ بناءً على ما تعلَّمْتُهُ في هذا الدرسِ: "يعتقدُ الكثيرونَ أنَّ المُنجِّمَ لا يختلفُ في حديثهِ عنْ عالِم الفَلكِ".

حورةُ حياةِ النجوم

The Life Cycle Of Stars

الفلرةُ الرّئيسةُ:

تمرُّ النجومُ بمراحلَ عمريةٍ مختلفةٍ طويلةٍ جدًّا قدْ تبلغُ ملياراتِ السنينَ اعتمادًا على كتلتِها.

نتاجاتُ التعلُم:

- أتتبَّعُ دورةَ حياةِ النجومِ بحسبِ كتلتِها منذُ ولادتِها حتّى موتِها.
- ُ أُبِيِّنُ أَنَّ النجومَ لا تحيا إلّا بوجودِ الاندماجاتِ النوويةِ في قلبِ النجم.
- أُحدِّدُ عمرَ الشمسِ بناءً على ما مضَى، وما تبقّى منْ عمرِها.
- · أُفرِّقُ بينَ الأشكالِ النجميةِ التي تنشأُ عندَ انفجارِ النجومِ في أثناءِ موتِها، مثلِ: النجومِ النيوترونيةِ، والثقوبِ السوداءِ، والنجومِ القزمةِ.
- أُوضِّحُ أَنَّ النجومَ هيَ أصلُ العناصرِ الكيميائيةِ المُكوِّنةِ للأرض.
- أُقارِنُ بينَ أعمارِ النجومِ وأعمارِ الكائناتِ الحيةِ.

المفاهيم والمصطلحات:

السديمُ السديمُ Protostar النجمُ الأولىُّ النجمُ الأولىُّ

نجومُ التتابع الرئيسِ

Main Sequence Stars

العملاقُ الأحمرُ Red Giant

السديمُ الكوكبيُّ Planetary Nebula القنهُ الأبيضُ

القزمُ الأبيضُ White Dwarf القزمُ الأبيضُ Supernova


النجمُ النيوترونيُّ Neutron Star

Black Hole الثقبُ الأسودُ

حياةُ النجومِ The Life Of Stars

إذا أردْنا دراسة التغيُّرِ في سماتِ شخصٍ يبلغُ من العمرِ (60) عامًا منذُ لحظةِ ولادتِهِ حتى بلوغِهِ هذهِ السنَّ؛ بُغْيةَ تصنيفِ الأفرادِ الى فئاتٍ عمريةٍ مختلفةٍ، فلا شكَّ في أنَّنا سنعتمدُ التصنيفَ الآتي أساسًا لهذهِ الدراسةِ: فئةُ الأطفالِ، فئةُ الصغارِ، فئةُ الشبابِ، فئةُ كبارِ السنِّ. بيدَ أنَّنا سنُواجِهُ حتمًا مشكلةً تتمثلُ في استحالةِ تتبُّع كبارِ السنِّ. بيدَ أنَّنا سنُواجِهُ حتمًا مشكلةً تتمثلُ في استحالةِ تتبُّع المراحلِ العمريةِ التي مرَّ بها هذا الشخصُ في أثناءِ دراستِنا إيّاها، بالرغم منْ علمنا المُؤكَّدِ بوجودِها، أنظرُ الشكلَ (9). وبالمثلِ، فإنَّهُ يصعبُ تتبُّعُ دورةِ حياةٍ نجمٍ ما؛ لأنَّ ذلكَ يستغرقُ ملياراتِ السنينَ. وقدِ اهتدى العلماءُ إلى دراسةِ خصائصِ النجومِ المختلفةِ التقريرِ أنَّ النجومَ تولَدُ وتمرُّ بدورةِ حياةٍ منَ البدايةِ إلى النهايةِ.

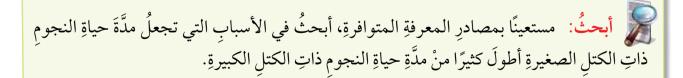
تعلَّمْتُ في صفوفٍ سابقةٍ أنَّ نظامَنا الشمسيَّ قدْ نشأ نتيجة الانكماشِ الجذبيِّ للسديم، وهو سحابةٌ كبيرةٌ من الغبارِ الكونيِّ والغازِ الذي يتكوَّنُ معظمهُ منْ عنصريِ الهيدروجينِ والهيليوم بحسبِ النظريةِ السديميةِ. وقدْ نشأ عنْ هذا الانكماشِ تجمُّعُ غالبيةِ الكتلةِ الناتجةِ في مركزِ السديم مُشكِّلةً الشمس، وتراكم بقيةِ الكتلةِ وللهُ على شكلِ قرصٍ تكوَّنَتْ منهُ كواكبُ المجموعةِ بقيةِ الكتلةِ حولَهُ على شكلِ قرصٍ تكوَّنَتْ منهُ كواكبُ المجموعةِ الشمسيةِ، ومنْها الأرضُ. فهلْ تتشابهُ النجومُ في نشأتِها معَ الشمسِ بحسب هذهِ النظريةِ؟

الشكلُ (9): المراحلُ العمريةُ المختلفةُ التي قدْيمرُّ بها الإنسانُ.

الشكلُ (10): ولادةُ النجمِ الأوليِّ من السديمِ. تبدأ حياة النجوم جميعًا من السديم الأدلة على وجود دورة حياة النجوم؛ إذْ تُمثّلُ السُّدُمُ الحاضناتِ الله تولَدُ فيها النجومُ. وفي الجزءِ الأكثر كثافة من السديم يبدأ انكماشُ مادة السديم نحو قلبِ النجم بفعلِ تأثير الجاذبية، وتزدادُ الطاقةُ الحركيةُ بصورة كبيرةٍ. نتيجةً لذلكَ؛ تزدادُ درجةُ حرارة قلبِ النجم، فيتولَّدُ ضغطٌ حراريٌّ يُعاكِسُ الانكماشَ الجذبيَّ، ويتكوَّنُ النجمُ الأوليُّ المحلة الذي يُشْبِهُ الطفلَ حديثَ الولادةِ في حياةِ الإنسانِ، مُعلِنًا بدءَ أولِ مرحلةٍ من مراحلِ حياةِ النجم، أنظرُ الشكلَ (10).

عندماً ترتفعُ درجُةُ حرارةِ قلبِ النجمِ الأوليِّ إلى (1.5) مليون كلفن، تبدأُ الاندماجاتُ النوويةُ في قلبِ النجمِ، وتُطلَقُ كميّاتٌ هائلةٌ من الطاقةِ، مُعْلِنَةً بدءَ حياةِ النجمِ ليصبحَ منْ نجومِ التتابعِ الرئيسِ Main Sequence Stars. ويقضي النجمُ معظمَ حياتِهِ في هذهِ المرحلةِ بسببِ تساوي قوَّةِ الانكماشِ الجذبيِّ نحوَ الداخلِ والضغطِ الحراريِّ نحوَ الخارج، أنظرُ الشكلَ (11)، وهيَ بذلكَ تُشْبِهُ مرحلةَ الشبابِ في حياةِ الإنسانِ، التي تُعَدُّ أطولَ مراحل حياتِهِ.

تجدرُ الإشارةُ إلى أنَّ دورةَ حياةِ النجمِ تعتمدُ على كتلةِ النجمِ الأوليِّ؛ وقدْ يعتقدُ بعضُ الأشخاصِ أنَّ النجومَ التي كتلتُها أكبرُ تبقى مدَّةً أطولَ منْ تلكَ التي كتلتُها أقلُّ، ولكنَّ العلماءَ أثبتوا عكسَ ذلكَ؛ إذْ تتناسبُ كتلةُ النجمِ عكسيًّا معَ مدَّةِ حياتِهِ. فالنجومُ ذاتُ الكتلةِ الصغيرةِ (أي الأقلُّ كتلةً منَ الشمسِ) تستنفذُ وَقودَها النوويَّ على نحو أبطأً منَ النجومِ ذاتِ الكتلةِ الكبيرةِ؛ ما يعني أنَّ حياتَها تستمرُّ مدَّةً أطولَ بكثيرِ.

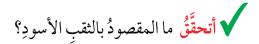


الشكلُ (11): تتساوى قوَّةُ الانكماشِ الجذبيِّ نحوَ الداخلِ مع الضغطِ الحراريُّ نحوَ الخارجِ، في مرحلةِ التتابع الرئيسِ.

الشكلُ (12): العملاقُ الأحمرُ.

حينَ يبدأُ الوَقودُ النوويُّ بالنفادِ منْ قلبِ نجمِ التتابعِ الرئيسِ، يُسخَّنُ الغلافُ الهيدروجينيُّ الذي يحيطُ بهِ حتّى تصبحَ درجةُ الحرارةِ فيهِ كافيةً لبدءِ اندماجِ الهيدروجينِ؛ ما يُنتِجُ طاقةً أكثر ممّا كانَتْ عليْهِ عندما كانَ نجمًا منْ فئةِ التتابعِ الرئيسِ، فيزدادُ حجمُهُ بسببِ زيادةِ قوَّةِ الضغطِ الحراريِّ نحوَ الخارجِ على الانكماشِ الجذبيِّ نحوَ الداخلِ. ونظرًا إلى انتشارِ الطاقةِ على مساحةِ سطحٍ أكبرَ؛ تنخفضُ درجاتُ الحرارةِ السطحيةِ، فيبدو النجمُ باللونِ الأحمرِ، عندئذٍ يصبحُ النجمُ عملاقًا السطحيةِ، فيبدو النجمُ باللونِ الأحمرِ، عندئذٍ يصبحُ النجمُ عملاقًا حمر Super Red Giant، أوْ نجمًا فوقَ عملاقٍ أحمرَ Red Giant).

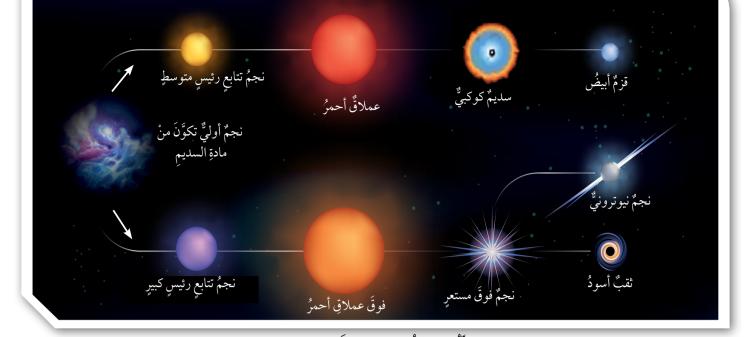
الشكلُ (13) أ: قزمٌ أبيضُ. ب: قزمٌ أسودُ. أُقارِنُ بينَ القزمِ الأبيضِ والقزمِ الأسودِ.



موتُ النجومِ The Deaths of Stars

تموتُ النجومُ (بالمفهومِ الفَلكيِّ) عندما يفقدُ العملاقُ الأحمرُ الوقودَ النوويَّ، فيُكوِّنُ سديمًا كوكبيًّا Planetary Nebula، وهوَ سديمٌ يمتازُ بشكلِهِ الكرويِّ، وكثافتِهِ الكبيرةِ جدًّا. أمّا مادةُ قلبِ السديمِ الكوكبيِّ المُتبقِّيةُ فتُكوِّنُ نجمًا يُسمّى قرمًا أبيضَ White Dwarf كما في الشكلِ (13/ أ). تمتازُ هذهِ الأقزامُ بكثافتِها الكبيرةِ جدًّا، وحجمِها الذي يساوي حجمَ الأرضِ تقريبًا، وكتلتِها التي تُقارِبُ كتلةَ الشمسِ. واللافتُ أنّها تتوهَّجُ بصورةٍ ضعيفةٍ بالرغم منْ عدم احتوائِها على وقودٍ نوويً، ومصدرُ هذا التوهُّجِ هوَ الطاقةُ المُتبقِّيةُ في قلبِ النجمِ. ومنَ المُتوقَّعِ أنْ تتوقَّفَ هذهِ الأقزامُ عنِ التوهُّجِ بعدَ ملياراتِ السنينَ، عندئذٍ يُطلَقُ عليْها اسمُ الأقزام السودِ Black Dwarfs ، أنظرُ الشكلَ (13/ ب).

أمّا النجم فوق العملاقِ الأحمرِ فينفجرُ انفجارًا عظيمًا خلالَ زمنٍ قصيرٍ عندما يفقدُ وقودَهُ النوويَّ، مُكوِّنًا نجمًا فوقَ مُستعِرٍ Supernova، وهو نجم شديدُ السطوع، يُطلِقُ طاقةً تُعادِلُ الطاقة التي تُصدِرُها الشمسُ خلالَ مدَّةِ حياتِها. وما تبقّى منْ مادةِ القلبِ فإنَّها تُكوِّنُ نجمًا نيوترونيًّا خلالَ مدَّةِ حياتِها. وما تبقّى منْ مادةِ القلبِ فإنَّها تُكوِّنُ نجمًا نيوترونيًّا أسود Black Hole، تبعًا لكتلةِ مادةِ قلبِ النجم، أنظرُ الشكلَ (14/ أ، ب).


تمتازُ النجومُ النيوترونيةُ بأنّها أصغرُ حجمًا منَ الأقزامِ البيضِ؛ إذْ يبلغُ قُطْرُها (25 km) تقريبًا، وتزيدُ كثافتُها مليونَ مَرَّةٍ على كثافةِ الأقزامِ البيضِ. وفي حالِ زادَتِ الكتلةُ المُتبقِّيةُ في قلبِ النجمِ على كتلةِ الشمسِ بنحوِ ثلاثِ مَرّاتٍ، فإنّهُ ينتهي على صورةِ ثقبِ أسودَ. والثقبُ الأسودُ جرمٌ سماويٌّ ذو كثافةٍ وجاذبيةٍ كبيرةٍ جدًّا، وهو يجذبُ جميعَ أشكالِ الطاقةِ أو المادةِ التي تقتربُ منْهُ، ولا يسمحُ لها بالإفلاتِ منْهُ؛ لذا لا يُمكِنُ رؤيةُ الثقوبِ السوداءِ واكتشافُها مباشرةً.

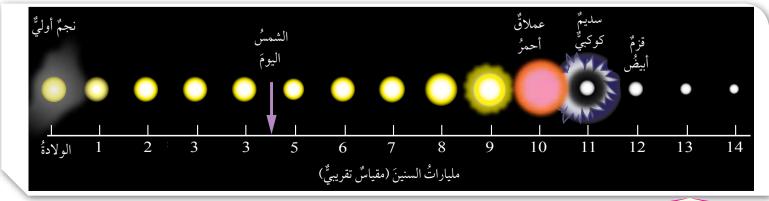
الشكلُ (14) أ: انبعاثاتُ الأشعةِ السينيةِ منْ سديمِ السرطانِ (السلطعونُ). ب: أولُ صورةِ التُقِطَتْ للثقبِ الأسودِ الهائلِ في شهرِ نيسانَ منْ عام(2019م).

الشكلُ (15): دورةُ حياةِ النجوم التي أوْ ثقب أسودً.

أتتبُّعُ دورةَ حياةِ نجمِ تتابُع رئيسٍ كبيرٍ.

تبدأُ بالنجم الأوليِّ الذي تَكوَّنَ منَّ مادةِ السديم الكُونيِّ، وتنتهي بموتِ النجمِ في صورةِ قزمِ أبيضَ، أوْ نجمِ نيوترونيٍّ،

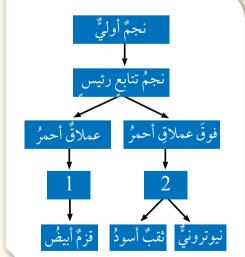
يُمثِّلُ الشكلُ (15) مُلخَّصًا لمراحلِ دورةِ حياةِ النجومِ.


دورةُ حياةِ الشمسِ Life Cycle of the Sun

تُعَدُّ الشمسُ أحدَ النجوم متوسطةِ الحجم، ويُقدِّرُ العلماءُ عمرَها الآنَ بنحوِ (4.6) ملياراتِ سنةٍ؛ أيْ إنَّها ما تزالُ شابَّةً، وفي أكثرِ مراحل حياتِهَا استقرارًا. ولكنْ، كمْ سنةً يُتوقَّعُ أنْ يستمرَّ إشْراقُ الشمسِ ولمعانُها؟ متى يُتوقَّعُ أنْ تنتهيَ حياتُها؟ أَنظرُ الشكلَ (16) الذي يُمثِّلُ

دورةَ حياةِ الشمسِ. توقَّعَ العلماءُ أَنْ يستمرَّ إشراقُ الشمسِ مدَّةَ (5.5) ملياراتِ سنةٍ أُخرى، وبيَّنوا أنَّها الآنَ في مرحلةِ التتابع الرئيسِ التي تُولِّدُ الشمسُ فيها الطاقة، وأنَّها ستتطوَّرُ إلى عملاقي أحمرَ عندَ نفادِ مخزونِ الهيدروجين والهيليوم منْها. توقَّعَ العلماءُ أيضًا أنَّ الحرارةَ الناتجةَ منَ العملاقِ الأحمر ستجتاحُ كوكبَ الأرضِ، وتجعلُ الحياةَ مستحيلةً على سطحِهِ، وأنَّ حياةَ الشمسِ ستنتهي، وتموتُ في صورةِ قزمِ أبيضَ بعدَ مرورِ ملياريْ سنةٍ أُخرى.

الشكلُ (16): دورةُ حياةِ الشمس. أُبيِّنُ ما العمرُ الذي قدَّرَهُ العلماءُ لموتِ الشمس؟


◄ أتحقَّقُ أتتبَّعُ المراحلَ التي تمرُّ بها الشمسُ.

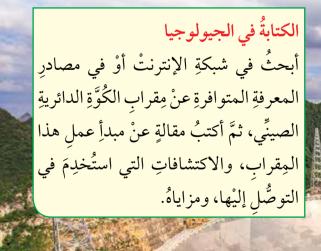
- أَفَكُل 1. "يرتبطُ وجودُنا على سطحِ الأرضِ بالاندماجاتِ النوويةِ في قلبِ النجمِ". أذكرُ الأدلةَ التي يُمكِنُ أَنْ تُثبِتَ صحَّةَ هذهِ العبارةِ، مستعينًا بمصادرِ المعرفةِ المتوافرةِ.
- 2. أفترضُّ أنَّنا بحاجةٍ إلى نجومٍ أُخرى (غيرِ الشَّمسِ) قادرةٍ على دعمِ الحياةِ على سطحِ الأرضِ. ما أفضلُ أنواع النجومِ التي يجبُ أخْذُها بالاعتبارِ؟ لماذا؟

مراجعة الدّرسِ

- 1. أُوضِّحُ المقصودَ بالسديم.
- 2. أُفسِّرُ كيفَ يتكوَّنُ النجمُ الأوليُّ منَ السديم.
- 3. أُقارِنُ بينَ النجمِ النيوترونيِّ والقزمِ الأبيضِ منْ حيثُ: الكثافةُ، والكتلةُ، والحجمُ. ثمَّ أُدَوِّنُ إِجابتي في جدولٍ.
 - 4. أُحدِّدُ العاملَ المُؤثِّرُ في مدَّةِ بقاءِ النجمِ قبلَ موتِهِ.
 - 5. لماذا تتطوَّرُ بعضُ النجومِ إلى أقزامِ بيضٍ، ويتطوَّرُ غيرُها إلى ثقبٍ أسودَ، أوْ نجمٍ نيوترونيِّ؟
 - 6. أستنتج سبب تسمية الثقوب السوداء بهذا الاسم.
- 7. أُنشِئُ مُخطَّطًا مفاهيميًّا يُبيِّنُ مراحلَ حياةِ الشَمسِ، وأكتبُ كلَّ عبارةٍ تُمثِّلُ مرحلةً منْ هذهِ المراحلِ في مربع منفصلٍ ضمنَ المُخطَّطِ الانسيابيِّ بالترتيبِ.
 - 8. أدرسُ الَشكَلَ المُجاورَ اللّذي يُمثّلُ مُخطَّطًا لدورةِ حياةِ النجوَمِ، ثمَّ أُجيبُ عنِ الأسئلةِ الآتيةِ: أ- أكتبُ ما يُمثَّلُهُ الرقمُ (1)، والرقمُ (2).
 - ب- ما أولُ مرحلةٍ منْ مراحلِ حياةِ النجم؟
 - ج- إذا علمْتُ أنَّ يدَ الجوزاءِ هي منَ النجومِ الحمراءِ العملاقةِ، وأنَّ قلبَ العقربِ هوَ منَ النجومِ فوقِ العملاقةِ الحمراءِ، فأيُّهُما تنتهي حياتُهُ بصورةٍ أسرعَ؟
 - د- أيُّ الآتيةِ اكتملَتْ دورةُ حياتِهِ: النجمُ النيوترونيُّ، نجمُ التتابع الرئيسِ؟ نجمُ التتابع الرئيسِ؟

الإثراء والتّوسُّعُ

مِقرابُ الكُوَّةِ الدائريةِ الصينيُّ (فاست)


Aperture Spherical Telescope (Fast)

يُعَدُّ هذا المِقرابُ الأكبرَ حجمًا بينَ المقاريبِ (التلسكوباتُ) الراديويةِ في العالَم، وهوَ يمتازُ بتصميم مُبتكرِ؛ إذْ يبلغُ قُطْرُهُ (500m)، ويتكوَّنُ منْ (4450) لوحًا؛ ما يعطيهِ مساحةَ تجميع تَقْربُ منْ (196000m)، وهذا يُعادِلُ مساحةً تجميع (30) ملعبَ كرةِ قدم. بدأ تنفيذُ مشروع FAST عامَ (1102م)، وقدْ رأى النورَ أولَ مَرَّةٍ في شهرِ أيلولَ منْ عامِ (2016م). وبعدَ مرحلةِ اختبارٍ استمرَّتْ (3) سنواتٍ، أُعلِنَ عنْ تشغيلِهِ كاملًا عامَ (2020م).

يقومُ مبدأُ عملِ هذا المقرابِ على استخدامِ سطحٍ نشطٍ مصنوعٍ منْ ألواحٍ معدنيةٍ يُمكِنُ إمالتُها بواسطةِ جهازِ حاسوبٍ؛ للمساعدةِ على تغييرِ درجةِ التركيزِ في مناطقَ مختلفةٍ منَ السماءِ، وتجميعِ أمواجِ الراديو التي تتدفّقُ على الأرض منَ الفضاءِ السحيقِ، فتتوافرُ معلوماتٌ

عنْ سحبِ غازِ الهيدروجينِ القديمةِ، أوِ الثقوبِ السوداءِ البعيدةِ، أوِ النجوم النابضةِ.

في شهرِ آبَ منْ عام (2017م)، استعمل علماء الفلكِ هذا المقراب الضخم لاكتشافِ زوجٍ من النجوم النابضة، يبعدانِ عنّا آلاف السنين الضوئية. والنجمانِ المُكتشفانِ عاليا الكثافة، ومحاطانِ بمجالاتٍ مغناطيسيةٍ قويّةٍ، ويدورانِ ومحاطانِ بمجالاتٍ مغناطيسيةٍ قويّةٍ، ويدورانِ حولَ محورِهِما بسرعةٍ كبيرةٍ. يبدو هذانِ النجمانِ وكأنّهُما ينبضانِ عندَ النظرِ إليْهِما منَ الأرض؛ لذا يُطلَقُ عليْهِما وعلى النجوم المماثلةِ لهُما اسمُ لنجوم النابضةِ. وتُستخدَمُ مواقعُ هذهِ النجوم وتوقيتاتُها نقاطًا مرجعيةً في الفضاءِ، وهي تساعدُنا على فهم نظريةِ الانفجارِ العظيمِ. ومنَ المُنتظرِ على المحدامُ هذا التلسكوبِ العملاقِ في تبيع مركبةِ الفضاءِ التي ستسافرُ إلى كوكبِ المريخِ، بوصفِها الفضاءِ التي ستسافرُ إلى كوكبِ المريخِ، بوصفِها جزءًا منْ برنامجِ الفضاءِ الصينيِّ.

مراجعة الوحدة

السوال الأول:

أوضِّحُ المقصودَ بكلِّ ممّا يأتي:

سطوعُ النجوم، الثقبُ الأسودُ، النجومُ المُتعدِّدةُ.

السوال الثاني:

أُرتِّبُ النجومَ الآتيةَ تنازليًّا بحسبِ درجاتِ حرارتِها السطحيةِ: نجومٌ برتقاليةٌ، نجومٌ صفراء، نجومٌ زرقاءُ.

السوال الثالث:

أتنباً بما سيحدثُ لسطوعِ الشمسِ إذا زادَ حجمُها أضعافَ ما كانَتْ عليْهِ، وأربطُ ذلكَ بإمكانيةِ الحياةِ على سطح الأرضِ.

السؤالُ الرابعُ:

أدرسُ الشكلَ الآتيَ الذي يُمثِّلُ مجموعةً منَ الكوكباتِ النجميةِ، ثمَّ أُجيبُ عن الأسئلةِ التي تليهِ:

أ - أذكرُ أسماءَ الكوكباتِ النجميةِ الواردةِ في الشكلِ. ب- أُوضِّحُ المقصودَ بالكوكبةِ النجميةِ.

- ج- أَفْسِرُ سببَ عدمِ اعتبارِ العلماءِ المجموعاتِ النجميةَ الواردةَ في الشكلِ ضمنَ كوكباتِ البروج.
- د- أَقَارِنُ: ما أوجهُ التشابهِ والاختلافِ بينَ الكوكباتِ النجميةِ؟

السوال الخامس:

أبحثُ في صحَّةِ العبارةِ الآتيةِ:

"يُعتقَدُ أنَّ تكوينَ نظامِ الأرضِ هوَ نتيجةً طبيعيةً لتكوينِ النجوم".

السؤال السادس:

أُفسِّرُ: يُعَدُّ اكتشافُ السُّدُمِ الكونيةِ أحدَ أهمِّ الأدلةِ على وجودِ دورةِ حياةٍ للنجومِ.

السوال السابع:

أُبيِّنُ كيفَ يتكوَّنُ نجمُ التتابعِ الرئيسِ.

السوال الثامن:

لماذا سُمِّيَتِ النجومُ العمالقةُ الحمراءُ بهذا الاسمِ؟

السؤالُ التاسع:

أستخلصُ الأسبابَ التي تجعلُ قرمًا أبيضَ يتطوَّرُ إلى قرم أسودَ.

السؤالُ العاشرُ:

أُعلِّلُ٠

- أ تتناسب كتلة النجم عكسيًّا مع مدَّة حياتِهِ
- ب- يقتصرُ ظهورُ بعضِ المجموعاتِ النجميةِ على فصولِ مُحدَّدةٍ.

السؤال الحادي عشر:

أضعُ دائرةً حولَ رمزِ الإجابةِ الصحيحةِ في ما يأتي: 1. تعتمدُ دورةُ حياةِ النجومِ على:

- أ شكلِها. ب- حجمِها.
- ج- كتلتِها. د- عمرِها.
- 2. يتكوَّنُ النجمُ في معظمِهِ من عنصرَي:
 - أ الهيدروجينِ والكربونِ.
 - ب- الهيدروجينِ والأكسجينِ.
 - ج- الهيليوم والكربون.
 - د- الهيدروجينِ والهيليومِ.
- 3. نجما المئزر والسهى هما مثالان على نظام:
- أ النجوم المُتعدِّدةِ. ب- النجوم الثنائيةِ.
 - النجوم المتعدور
 - ج- العناقيدِ النجميةِ. د- الكوكباتِ.

مراجعة الوحدة

4. عددُ كوكباتِ البروج هوَ:

أ - 15. ب- 100000.

ج- 13.

5. المرحلةُ العمريةُ التي يقضي فيها النجمُ معظمَ
 حياتِهِ هيَ:

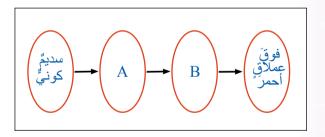
أ- العملاقُ الأحمرُ. ب- التتابعُ الرئيسُ.

ج- النجمُ الأوليُّ.
 د - الثقبُ الأسودُ.

6. اسمُ الحِرمِ السماويِّ الذي كتلتُهُ تُقارِبُ كتلةَ الشمسِ:

أ - الثقبُ الأسودُ. ب- القزمُ الأبيضُ.

ج- النجمُ النيوترونيُّ. د - النجمُ فوقَ المُستعِرِ.


آلدائرة التي تصنعها الشمس في أثناء حركتها الظاهرية حول الأرض تُسمّى:

أ - الكوكباتِ. ب- البروج.

ج- الدبَّ الأكبرَ د - الثريا.

السؤال الثاني عشر:

أدرسُ الشكلَ الآتي الذي يُمثِّلُ دورةَ حياةِ نجمٍ كتلتُهُ (5) أضعافِ كتلةِ الشمس، ثمَّ أُجيبُ عنِ الأسئلةِ الآتيةِ:

أ - أُسمّي كُلًّا منَ النجم A، والنجم B.

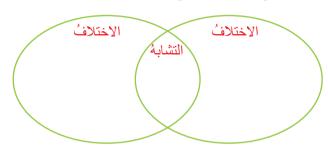
ب- ما شكل موت النجم B؟

ج- ما الرمزُ الذي يُمثِّلُ أطولَ مرحلةٍ في حياةِ النجمِ؟

د- متى يتحوَّلُ النجمُ منَ المرحلةِ A إلى المرحلةِ B؟

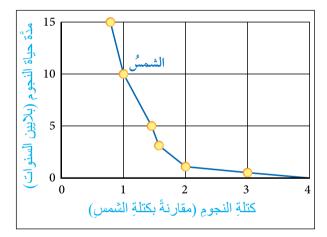
السؤالُ الثالث عشر:

أُوضِّحُ أهميةَ الكوكباتِ النجميةِ في حياتِنا.


السؤالُ الرابع عشر:

تُعَدُّ النجومُ الثنائيةُ أحدَ الأنظمةِ النجميةِ في السماءِ. بناءً على ما تعلَّمْتُهُ، أُجيبُ عنِ الأسئلةِ الآتيةِ:

أ- أُوضِّحُ المقصودَ بالنجومِ الثنائيةِ.


ب- أذكرُ مثالًا على النجوم الثنائيةِ.

ج- أُقارِنُ بينَ النجومِ الثنائيةِ والعناقيدِ النجميةِ كما في المُخطَّطِ الآتي:

محاكاةً لأسئلةِ اختباراتِ دوليةٍ

أدرسُ الرسمَ البيانيَّ الآتي الذي يُمثِّلُ العلاقةَ بينَ كتلةِ النجمِ مقارنةً بكتلةِ الشمسِ ومدَّةِ حياتِهِ قبلَ نفادِ الوَقودِ النوويِّ منْ داخلِهِ، ثمَّ أُجيبُ عنِ الأسئلةِ الآتيةِ:

- أ- كمْ سيعيشُ نجمٌ كتلتُهُ أكبرُ منْ كتلةِ الشمسِ بـِ (0.75) مَرَّةٍ؟
- ب- كمْ سيعيشُ نجمٌ كتلتُهُ تساوي (3) أضعافِ كتلةِ الشمس؟
- ج- أكتبُ فقرةً منْ سطريْنِ أُوضِّحُ فيها العلاقةَ بينَ كتلةِ النجم ومدَّةِ حياتِهِ

(أ)

أنظمةٌ نجميةٌ Stellar Systems: مجموعةُ نجوم ترتبطُ فيما بينَها بقوى جذبٍ تجعلُها تدورُ حولَ بعضِها. وهي تنقسمُ إلى أقسامٍ عِدَّةٍ، مثلِ: النجومِ الثنائيةِ، والنجومِ المُتعدِّدةِ.

التحامُّ Cementation: تخلُّلُ المحاليلِ المائيةِ الفراغاتَ الموجودةَ في الرسوبياتِ؛ ما يؤدي إلى ترسُّبِ بعضِ الموادِّ المعدنيةِ التي تحملُها في تلكَ الفراغاتِ. وعندما تتصلَّبُ، فإنَّها تربطُ حبيباتِ الصخرِ ببعضِها.

اندماجاتٌ نوويةٌ Nuclear Fusions: اندماجاتٌ تحدثُ في قلبِ النجمِ؛ إذْ تَتَّحِدُ النَّوى الخفيفةُ لنظائرِ الهيدروجينِ (الديتيريومُ ('۱۲)، والتريتيومُ ('۱۲)) لإنتاجِ نواةٍ أثقلَ، هي نواةُ الهيليومِ. ونظرًا إلى فرقِ الكتلةِ بينَ الموادِّ المتفاعلةِ والمادةِ الناتجةِ منَ التفاعلِ؛ تنتجُ كميَّاتٌ كبيرةٌ منَ الطاقةِ.

(ت)

تحوُّلُ Metamorphism: عمليةٌ تحدثُ في الصخورِ نتيجةَ تعرُّضِها لعواملِ التحوُّلِ (الحرارةُ، الضغطُ، المحاليلُ المائيةُ الحارةُ)؛ ما يؤدي إلى تغيُّرِ نسيجِ الصخرِ، أوْ تركيبِهِ المعدنيِّ، أوْ كليْهِما وهوَ في الحالةِ الصُّلْبةِ، مُنتِجًا بذلكَ صخورًا جديدةً.

تحوُّلُ إقليميُّ Regional Metamorphism: أحدُ أنواعِ التحوُّلِ الذي يحدثُ على مساحةٍ واسعةٍ منَ الصخورِ نتيجة الحرارةِ والضغطِ المرتفعيْنِ عندَ حدودِ الصفائحِ الأرضيةِ؛ ما يتسبَّبُ في إعادةِ تبلوُرِ المعادنِ المُكوِّنةِ لها، وتكوينِ معادنَ جديدةٍ، فتنتجُ صخورٌ جديدةٌ تمتازُ بنسيجِها المُتورِّقِ.

تحوُّلُ بالدفنِ Burial Metamorphism: أحدُ أنواعِ التحوُّلِ الذي يحدثُ نتيجةَ دفنِ الصخورِ الرسوبيةِ في أعماقٍ كبيرةٍ بباطنِ الأرضِ، حيثُ تتعرَّضُ الصخورُ لدرجاتِ حرارةٍ وضغطٍ مرتفعيْنِ، وتتحوَّلُ الصخورُ الأصليةُ وهيَ في الحالةِ الصُّلْبةِ إلى صخورٍ جديدةٍ.

تحوُّلُ تماسيٌّ Contact Metamorphism: أحدُ أنواعِ التحوُّلِ الذي يحدثُ عندما تلامسُ الماغما المُندفِعةُ منْ باطنِ الأرضِ - في أثناءِ حركتِها - صخورًا قديمةً تكونُ قريبةً منْها، أوْ تمرُّ خلالَها، فترتفعُ درجةُ حرارةِ الصخورِ؛ ما يؤدي إلى حدوثِ تغيُّرٍ في تركيبِها المعدنيِّ، فتتحوَّلُ إلى صخورٍ منْ نوع آخرَ.

تراضٌ Compaction: عمليةٌ تحدثُ بسببِ الضغطِ الناتجِ من ْتراكمِ الرسوبياتِ فوقَ بعضِها على شكلِ طبقاتٍ، ويعملُ الضغطُ الناتجُ منْ ثقلِ الرسوبياتِ على تقليصِ الفراغاتِ بينَ الحبيباتِ، فتصبحُ أقلَّ حجمًا، ويقلُّ سُمْكُ الطبقاتِ الناتجةِ.

تشقُّقاتٌ طينيةٌ Mud Cracks: أحدُ معالمِ الصخورِ الرسوبيةِ الذي يظهرُ على شكلِ شقوقٍ في الصخورِ الطينيةِ، تنتجُ عندما تجفُّ الرسوبياتُ الطينيةُ، فتنكمشُ المعادنُ المُكوِّنةُ لها مُسبِّبةً وجودَ تشقُّقاتٍ. وعندَ ترشُّب موادَّ مختلفةٍ منْها تمتلئُ الشقوقُ بتلكَ الموادِّ، وتحتفظُ بشكلِها.

(ث)

ثقبٌ أسودُ Black Hole: جِرمٌ سماويٌّ ذوكثافةٍ وجاذبيةٍ كبيرةٍ جدَّا، وهوَ يجذبُ جميعَ أشكالِ الطاقةِ أوِ المادةِ التي تقتربُ منْهُ، ولا يسمحُ لها بالإفلاتِ منْهُ؛ لذا لا يُمكِنُ رؤيةُ الثقوبِ السودِ واكتشافُها مباشرةً. والثقبُ الأسودُ يُمثِّلُ إحدى مراحلِ موتِ النجوم.

(د)

دائرةُ البروجِ Ecliptic: دائرةٌ تصنعُها الشمسُ في أثناءِ حركتِها الظاهريةِ حولَ الأرضِ. دورةُ السخورِ Rock Cycle: علاقةٌ تبادليةٌ ترتبطُ فيها الأنواعُ الثلاثةُ للصخورِ بعضُها ببعضٍ عنْ طريقِ العملياتِ الجيولوجيةِ المختلفةِ، بحيثُ يتغيَّرُ كلُّ نوعٍ منْها إلى الآخرِ.

(ر)

رسوبياتٌ Sediments: تجمُّعُ الفتاتِ الصخريِّ، وتراكمُهُ في أحواضِ الترسيبِ، بعدَ نقلِهِ عنْ طريقِ عوامل التعريةِ المختلفةِ.

(س)

سديمٌ Nebula: سحابةٌ منَ الغبارِ والغازاتِ التي تتكوَّنُ معظمُها منْ غازيِ الهيدروجينِ والهيليوم، ويُعَدُّ اكتشافُها أحدَ أهمِّ الأدلةِ على وجودِ دورةِ حياةٍ للنجوم، وتُمثِّلُ السُّدُمُ الحاضناتِ التي تولَدُ فيها النجومُ. سديمٌ كوكبيٌّ Planetary Nebula: سديمٌ يمتازُ بشكلِهِ الكرويِّ، وكثافتِهِ الكبيرةِ جدًّا، وهوَ ينشأُ عندما تموتُ النجومُ؛ أيْ حينَ يفقدُ العملاقُ الأحمرَ الوَقودَ النوويَّ، وتُكوِّنُ مادةُ قلبِ السديمِ الكوكبيِّ المُتبقِّيةُ نجمًا يُسمِّى القزمَ الأبيضَ.

سطوعُ النجمِ Luminosity: كميَّةُ الطاقةِ التي يَشِعُّها النجمُ فعليًّا في الثانيةِ الواحدةِ. يعتمدُ سطوعُ أيِّ نجمٍ على عامليْنِ، هما: درجةُ حرارةِ سطحِ النجمِ، وحجمُهُ، ويتناسبُ السطوعُ معَ كليْهِما طرديًّا.

(ص)

صخورٌ رسوبيةٌ فتاتيةٌ Clastic Sedimentary Rocks: صخورٌ تنشأُ منْ ترسُّبِ الفتاتِ الصخريِّ الناتجِ منَ التجويةِ الفيزيائيةِ في أحواضِ الترسيبِ، ثمَّ تصلُّبِهِ، وهي تُصنَّفُ اعتمادًا على حجومِها. صخورٌ رسوبيةٌ كيميائيةٌ Chemical Sedimentary Rocks: صخورٌ رسوبيةٌ كيميائيةٌ الموادِّ الذائبةِ في أحواضِ الترسيبِ، مثلِ البحارِ، بعدَ زيادةِ تركيزِها، ووصولِها إلى حالةِ الإشباعِ

صخورٌ رسوبيةٌ كيميائيةٌ حيويةٌ Biochemical Sedimentary Rocks: صخورٌ تنشأُ من ْتراكُمِ بقايا الكائناتِ الحيةِ الصُّلْبةِ؛ الحيوانيةِ أوِ النباتيةِ، وتصخُّرِها في أحواضِ الترسيبِ.

صخورٌ ناريةٌ جوفيةٌ Intrusive Igneous Rocks: صخورٌ تنشأُ نتيجةَ تبريدِ الماغما ببطءٍ في باطنِ الأرضِ، وهي تمتازُ بكِبرِ حجمِ بلّوراتِها، بحيثُ يُمكِنُ رؤيتُها بالعينِ المُجرَّدةِ.

صخورٌ ناريةٌ سطحيةٌ Extrusive Igneous Rocks: صخورٌ تنشأُ نتيجةَ تبريدِ اللابةِ بصورةٍ سريعةٍ على سطح الأرضِ، فتتكوَّنُ فيها بلّوراتٌ صغيرةُ الحجم لا تُرى بالعينِ المُجرَّدةِ.

(ط)

طبقيةٌ مُتدرِّجةٌ Graded-Bedding: اختلافُ حجمِ الحبيباتِ في الطبقةِ الرسوبيةِ الواحدةِ، بحيثُ يزدادُ حجمُ الحبيباتِ كلَّما اتَّجهْنا منَ الأعلى إلى أسفلِ الطبقةِ.

(ع)

علاماتُ النيمِ Ripple Marks: أحدُ معالمِ الصخورِ الرسوبيةِ التي تظهرُ على شكلِ تموُّ جاتٍ صغيرةٍ تكوَّنَتْ بفعلِ مياهِ الأنهارِ، أو الأمواجِ البحريةِ، أو الرياحِ، وحُفِظَتْ على بعضِ سطوحِ طبقاتِ الصخورِ الرسوبيةِ.

عملاقٌ أحمرُ Red Giant: نجمٌ عملاقٌ ناتجٌ منْ نجمِ تتابع رئيسٍ في حالةِ احتضارٍ؛ بسببِ بدءِ نفادِ الوقودِ النوويِّ منْ قلب نجمِ التتابعِ الرئيسِ، فيُسخَّنُ الغلافُ الهيدروجينيُّ الذي يحيطُ بهِ حتى تصبحَ درجةُ الحرارةِ فيهِ كافيةً لبدءِ اندماجِ الهيدروجينِ؛ ما يُنتِج ُ طاقةً أكثرَ ممّا كانَتْ عليهِ عندما كانَ نجمًا منْ فئةِ التتابعِ الرئيسِ، فيزدادُ حجمُهُ، ونظرًا إلى انتشارِ الطاقةِ على مساحةِ سطحٍ أكبرَ؛ تنخفضُ درجاتُ الحرارةِ السطحيةِ، فيبدو النجمُ باللونِ الأحمرِ.

عناقيدُ نجميةٌ Star Clusters: أحدُ الأنظمةِ النجميةِ المُتعدِّدةِ التي تتكوَّنُ منْ نجوم يرتبطُ بعضُها ببعضٍ بقوى تجاذبٍ، فتدورُ حولَ بعضِها، وتحوي أعدادًا كبيرةً نسبيًّا منَ النجومِ، يتراوحُ عددُها بينَ مئةِ نجمٍ ومئاتِ الآلافِ منَ النجومِ وهيَ ترتبطُ جذبيًّا ببعضِها؛ ما يجعلُها تتحرَّكُ بوصفِها وحدةً واحدةً في اتجاهٍ واحد.

(ق)

قرَمٌ أبيضٌ White Dwarfs: إحدى مراحلِ موتِ النجمِ، وهيَ تمتازُ بكثافتِها الكبيرةِ جدًّا، وحجمِها الذي يساوي حجمَ الأرضِ تقريبًا، وكتلتِها التي تُقارِبُ كتلةَ الشمسِ. واللافتُ أنَّها تتوهَّجُ بصورةٍ ضعيفةٍ بالرغمِ منْ عدمِ احتوائِها على وَقودٍ نوويٍّ، ومصدرُ هذا التوهُّجِ هوَ الطاقةُ المُتبقِّيةُ في قلبِ النجمِ.

قرَمٌ أسودُ Black Dwarfs: إحدى مراحلِ موتِ النجمِ، وهي تتكوَّنُ بعدَ أَنْ تتوقَّفَ الأقزامُ البيضُ عنِ التوهُّج مُدَدًا تُقدَّرُ بملياراتِ السنينَ.

(ك)

كوكباتُ Constellation: مجموعاتُ نجميةٌ لا ترتبطُ نجومُها بقوًى جذبيةٍ في ما بينَها؛ لذا تُسمّى المجموعاتِ النجمية الظاهرية؛ إذْ تظهرُ بأشكالِها المختلفةِ نتيجةَ انعكاسِ الأشعةِ الواصلةِ منْها إلى الأرضِ. وقدْ أطلقَ عليْها القدماءُ منَ الإغريقِ والمصريينَ أسماءً مُحدَّدةً كما تخيّلوها نسبةً إلى أسماءِ شخصياتٍ أسطوريةٍ، أوْ حيواناتٍ، أوْ أشكالٍ هندسيةٍ.

كوكباتُ البروجِ Zodiac: أكثرُ الكوكباتِ النجميةِ شيوعًا، وهيَ تُعرَفُ بالأبراجِ الفلكيةِ، ويرتبطُ اسمُها بدائرةِ البروجِ، وتقطعُها الشمسُ في أثناءِ مسارِها الظاهريِّ حولَ الأرضِ، ويبلغُ عددُها (13) كوكبةً تُشاهَدُ على مدارِ العام.

(ل)

لابةٌ Lava: صخورٌ مصهورةٌ تتدفَّقُ على سطحِ الأرضِ، وتختلفُ عنِ الماغما باحتوائِها على نسبةٍ أقلَّ من الغازاتِ.

(م)

ماغما Magma: صَهيرٌ صَخريٌّ يتكوَّنُ معظمُهُ منَ السليكا، ومنْ غازاتٍ أهمُّها بخارُ الماءِ، وهوَ يوجدُ في باطن الأرض.

(ن)

نجم ّ Star: جِرمٌ سماويٌّ كرويٌّ يتكوَّنُ منْ غازٍ ساخنٍ مُتأيِّنٍ، يغلبُ على مُكوِّناتِهِ نَوى عناصرِ الهيدروجينِ والهيليومِ، ونسبٍ قليلةٍ منْ عناصرَ أُخرى، مثلِ: الكربونِ، والنتروجينِ، والأكسجينِ، والحديدِ، وهوَ يُصدِرُ طاقةً حراريةً وضوئيةً.

نجمٌ أوليٌّ Protestor: المرحلةُ الأولى منْ مراحلِ حياةِ النجمِ، وهيَ تبدأُ نتيجةَ انكماشِ مادةِ السديم نحوَ قلبِ النجمِ بفعل تأثيرِ الجاذبيةِ ، وتزدادُ الطاقةُ الحركيةُ بصورةٍ كبيرةٍ. نتيجةً لذلكَ؛ تزدادُ درجةً حرارةِ قلبِ النجمِ، فيتولَّدُ ضغطٌ حراريٌّ يُعاكِسُ الانكماشَ الجذبيَّ.

نجومُ تتابع رئيسٍ Main Sequence Stars: المرحلةُ التي يقضي فيها النجمُ معظمَ حياتِهِ بسببِ تساوي قوَّةِ الانكماشِ الجذبيِّ نحوَ الداخلِ والضغطِ الحراريِّ نحوَ الخارجِ، وهيَ بذلكَ تُشْبِهُ مرحلةَ الشبابِ في حياةِ الإنسانِ، التي تُعَدُّ أطول مراحلِ حياتِهِ.

نجومٌ ثنائيةٌ Binary Stars: نظامٌ نجميٌّ يتكوَّنُ فقط ْمنْ نجميْنِ اثنيْنِ يرتبطانِ بقوًى تجاذبيةٍ في ما بينَهُما، تجعلُ أحدَهُما يدورُ حولَ الآخر.

نجمٌ فوقَ مُستعِرٍ Supernova: نجمٌ شديدُ السطوع، يُطلِقُ طاقةً تُعادِلُ الطاقةَ التي تُصدِرُها الشمسُ خلالَ مدَّةِ حياتِها. وهوَ يتكوَّنُ نتيجةَ الانفجارِ العظيم للنجومِ فوقِ العملاقةِ الحمراءِ عندما تفقدُ وَقودَها النوويَّ خلالَ مُدَدٍ قصيرةٍ.

نجمٌ نيوترونيٌّ Neutron Star: إحدى مراحلِ موتِ النجومِ، وهوَأصغرُ حجمًا منَ القزمِ الأبيضِ؛ إذْ يبلغُ قُطْرُهُ (25) كم تقريبًا، وتزيدُ كثافتُهُ مليونَ مَرَّةٍ على كثافةِ القزم الأبيضِ.

نسيجٌ Texture: وصفٌ لحجمِ البلّوراتِ، وشكلِها، وترتيبِها في داخلِ الصخرِ.

نسيجٌ سماقيٌّ (بورفيريُّ) Porphyritic Texture: نسيجٌ يُميِّزُ الصخورَ الناريةَ، وهوَ يتكوَّنُ منْ بلّوراتٍ مرئيةٍ محاطةٍ ببلّوراتٍ غيرمرئيةٍ.

نسيجٌ خشنُ الحبيباتِ Coarse Grained Texture: نسيجٌ يُميِّزُ الصخورَ الناريةَ الجوفيةَ، وهوَ يمتازُ بكِبرِ حجم بلّوراتِ الصخرِ، بحيثُ يُمكِنُ رؤيتُها بالعينِ المُجرَّدةِ.

نسيجٌ زجاجيٌّ Glassy Texture: أحدُ أنسجةِ الصخورِ الناريةِ السطحيةِ الذي يتكوَّنُ عندما تتعرَّضُ اللابةُ المنسابةُ على سطحِ الأرضِ لتبريدِ سريعِ جدَّا، فلا يحدثُ تكوُّنُ للبلّوراتِ، وترتبطُ الذرّاتُ بعضُها ببعضٍ عشوائيًّا، فيصبحُ النسيجُ زجاجيَّ الملمسِ.

نسيجٌ غيرُ مُتورِّقٍ Non foliation Texture: نسيجٌ يُميِّزُ بعضَ أنواعِ الصخورِ المُتحوِّلةِ، التي تحتوي على معادنَ ذاتِ بلّوراتٍ متساويةٍ في الحجمِ، مثلِ بلّوراتِ الكوارتزِ والكالسيتِ، ولا يوجدُ فيها أيُّ تطبُّقٍ، وهي تنتجُ بفعلِ التحوُّلِ التَّماسيِّ.

نسيجٌ فقاعيٌّ Vesicular Texture: نسيجٌ يُميِّزُ الصخورَ الناريةَ السطحيةَ، ويحتوي على فجواتٍ وثقوبٍ في الصخورِ، ويتكوَّنُ نتيجةَ خروجِ الغازاتِ منَ اللابةِ وهيَ تتدفَّقُ على سطحِ الأرضِ.

نسيجٌ مُتورِّقٌ Foliated Texture: نسيجٌ يُميِّز بُعضَ أنواعِ الصخورِ المُتحوِّلةِ، التي تحوي معادنَ على شكلِ طبقاتٍ رقيقةٍ؛ نتيجةً لترتيبِ بلّوراتِ بعضِ المعادنِ بشكلٍ مُتعامِدٍ معَ اتجاهِ الضغطِ المُؤثِّر في الصخرِ.

نسيجٌ ناعمُ الحبيباتِ Fine Grained Texture: نسيجٌ يُميِّزُ الصخورَ الناريةَ السطحية، وهوَ يمتازُ ببلّوراتٍ صغيرةِ الحجم لا تُرى بالعينِ المُجرَّدةِ.

قائمة المراجع

أولًا: المراجع العربية

- 1. عبد القادر عابد، جيولوجية الأردن وبيئته ومياهه، دار وائل للطباعة والنشر والتوزيع، 2016.
 - 2. محمد عبدالغنى عثمان مشرف، أسس علم الرسوبيات، جامعة ملك سعود الرياض 1997
- 3. حسن بن محمد باصرة، الاستدلال بالنجوم، مدينة الملك عبد العزيز للعلوم والتقنية، 102.

ثانيًا: المراجع الأجنبية

- 1. Lutgens, K. and Tarbuck, Foundations of Earth Science, Pearson; 7th Edition, 2014
- 2. Myron G. Best, Igneous and Metamorphic Petrology, Wiley-Blackwell; 2 edition, 2002
- 3. Earle, S. **Physical Geology**. Victoria, B.C.: BCcampus. 2015. Retrieved from https://opentextbc.ca/geology/
- 4. Prentice Hall Science Explorer, **Astronomy**, Astronomy Resourse Material, Boston, Massachusetts; Glenview, Illinois; Shoreview, Minnesota; Upper Saddle River, New Jersey, pearson. Available at the following Url: (https://l.cdn.edl.io/dzeXRtsWp1sOFxpMa1eBJy-qHUzsb0yDAMUaxqaesfJpyrMZm.pdf).
- 5. Scott., W., J., (2010). **Introduction to Astronomy from Darkness to Blazing Glory**, Astronomy Textbook, part 1; 2nd Edition, JAS Educational Publications, Printing by Minuteman Press, Berkley, California.
- KachelrieB, M., (2011). A Concise Introduction to Astrophysics, Lecture Notes for FY 2450, 2nd Edition, Institute for Fysikk, NTNU, Trondheim, Norway. Available at the following URL: (http://web.phys.ntnu.no/~mika/skript_astro.pdf).
- 7. Basu, B.; Chattopadhyay, T., &Biswas, S., N., (2010). **An Introduction to Astrophysics**, 2nd Edition, PHI Learning Private Limited, New Delhi. Available at the following URL:

قائمةُ المراجع

 $(\underline{https://books.google.jo/books?id=WG-HkqCXhKgC\&printsec=frontcover\&redir_esc=y\#v=o-nepage\&q\&f=false}).$

- 8. Tran, H.; Russo, P., and Russell, T., (2005). **Black Hole Activities— aquick reference guide**. Leiden University, University of Amsterdam ,Pearson Education Inc., publishing as Addison-Wesley.
- 9. Hawking, S., (2001). **A Brief History of Time**, available at the following URL: (https://www.fisica.net/relatividade/stephen_hawking_a_brief_history_of_time.pdf).
- 10. Liddle, A., (2003). **An Introduction to Modern Cosmology**, 2nd Edition, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, England.
- 11. Vidana, I., (2014). A three Hours Walk through the Physics of Neutron Stars, 26th Indian- Summer School & SPHERE School of Physics Low Energy Hadron Physics, September 3-7, 2014, Prague, Czech Republic.
- 12. National Science Foundation, (2005). **Astrobiology** -An Integrated Science Approach, TERC, 2067 Massachusetts Avenue, Ambit Press, Cambridge, Center, available at the following URL: (https://www.lpi.usra.edu/education/step2012/participant/TERC.pdf).
- 13. Johnston, H., (2018). **Modern Astronomy: An Introduction to Astronomy**, School of Physics, The University of Sydney, available at the following URL: (http://www.physics.usyd.edu.au/~helenj/IAST/IA1-intro.pdf).
- 14. Fraknoi, A.; Morrison, D.; and Wolff, S., (2017). **Astronomy**, OpenStax, Rice University, Houston, Texas.

قائمةُ المراجع

ثالثًا: المواقع الإلكترونية

- 1. www.starrynight.com
- 2. http://nightsky.jpl.nasa.gov
- 3. http://www.seasky.org/astronomy/astronomy.html
- 4. http://eclipse.gsfc.nasa.gov/SKYCAL/SKYCAL.html
- 5. https://hubblesite.org/science
- 6. https://chandra.harvard.edu/edu/formal/stellar-ev/
- 7. http://www.jwst.nasa.gov/
- 8. https://astroedu.iau.org/en/activities/1304/model-of-a-black-hole/
- 9. https://medium.com/@iauastroedu/black-hole-classroom-activities-quick-reference-guide-chapter-2-56f4513cf92
- 10. http://www.minsocam.org/

تم بحمد الله تعالى